243 research outputs found

    Therapy-Related Myeloid Neoplasm in Non-Hodgkin Lymphoma Survivors

    Get PDF
    Relatively little data on secondary cancers is available regarding patients treated for non-Hodgkin lymphoma (NHL), compared with those treated for Hodgkin lymphoma. Evolving treatment regimens have improved survival outcomes for NHL patients. As a result of this improvement, secondary malignancies are becoming an important issue in NHL survivors. This review aims to report data on this topic previously published by our group, adding unpublished results from the Modena Cancer Registry (MCR). We recently performed four studies about secondary neoplasms in NHL survivors: two studies analysing the risk of secondary neoplasms in patients treated for indolent and aggressive NHL; a meta-analysis of 23 studies investigating the risk of secondary malignant neoplasm (SMN) after NHL treatment; and a still-unpublished study evaluating the incidence of therapy-related myeloid neoplasm (t-MN) in patients treated for NHL (from the MCR database). The first two studies analysed 563 patients with indolent NHL and 1280 patients with diffuse large B-cell lymphoma (DLBCL) enrolled in the Gruppo Italiano Studio Linfomi (GISL) trials. Results showed that the cumulative incidence of secondary tumours was 10.5% at 12 years for indolent NHL and 8.2% at 15 years for DLBCL. Results of the meta-analysis indicated that NHL patients experienced a 1.88-fold increased risk for SMN compared with the general population; the standardized incidence risk (SIR) for secondary acute myeloid leukaemia (AML) was 11.07. Based on data from the MCR from 2000 through 2008, we found that the SIR was 1.63 for developing a secondary malignancy after NHL, and 1.99 for developing secondary haematological malignancies. Regarding myelodysplastic syndrome and/or AML incidence, nine NHL patients developed t-MN with a higher risk than expected (SIR 8.8, 95% CI: 4.0–16.6). In conclusion, patients treated for NHL are at increased risk of developing SMN. Regarding t-MN, data from the meta-analysis and the MCR demonstrate an excessive risk of developing AML (SIR 11.07 and 5.7, respectively) compared with solid SMN after treatment for NHL. Thus long-term monitoring should be considered for NHL survivors

    Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63

    Get PDF
    p53 and p63 are transcription factors -TFs- playing master roles in the DNA-damage response and in the development and maintenance of pluristratified epithelia, respectively. p53 mutations are common in epithelial tumors and HaCaT keratinocytes harbor two p53 alleles -H179Y and R282Q- with gain-of-function (GOF) activity. Indeed, functional inactivation of mutp53 affects the growth rate of HaCaT. We investigated the strategy of mutp53, by performing ChIP-Seq experiments of mutp53 and p63 and analyzed the transcriptome after mutp53 inactivation. Mutp53 bind to 7135 locations in vivo, with a robust overlap with p63. De novo motifs discovery recovered a p53/p63RE with high information content in sites bound by p63 and mutp53/p63, but not by mutp53 alone: these sites are rather enriched in elements of other TFs. The HaCaT p63 locations are only partially overlapping with those of normal keratinocytes; importantly, and enriched in mutp53 sites which delineate a functionally different group of target genes. Our data favour a model whereby mutp53 GOF mutants act both by tethering growth-controlling TFs and highjacking p63 to new locations

    Ethidium bromide as a marker of mtDNA replication in living cells.

    Get PDF
    Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Clinical Effects of an ACT-Group Training in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Abstract Objective The aim of the present study is evaluate the effectiveness of an Acceptance and Commitment Therapy (ACT)-based training protocol, in adjunct to token economy and previous parent training, in a sample of children with Attention-Deficit/Hyperactivity Disorder (ADHD). By promoting the reduction of immediate responses to thoughts and feelings, we aimed to reduce the impulsive behaviour of children and to improve their self-regulation. Methods The protocol was centred on awareness of the present moment, defusion and acceptance of feelings and emotions. Behavioural (Conners' Parent Rating Scale -Revised: Long version, CPRS-R:L) and severity measures (Clinical Global Impression -Severity, CGI-S) were assessed before and after treatment in a clinical sample of 31 children aged 8–13 years. Results At the end of the ACT protocol, children showed significant improvement in global functioning and behavioural symptoms. There were significant improvements in the CPRS subscales Cognitive Problems (p = 0.005), Hyperactivity (p = 0.006), Perfectionism (p = 0.017), ADHD Index (p = 0.023), Global Index: Restless–Impulsive (p = 0.023), Global Index: Total (p = 0.036), DSM IV Inattentive (p = 0.029), DSM IV Hyperactive–Impulsive (p = 0.016), and DSM IV Total (p = 0.003). When controlling for the confounding effect of pharmacological therapy, comorbidities and socio-economic status, treatment maintained a significant effect on the CPRS subscales Perfectionism (partial η2 = 0.31, p < 0.01), Global Index: Restless–Impulsive (partial η2 = 0.29, p < 0.01), Global Index: Total (partial η2 = 0.31, p < 0.01), DSM IV Hyperactive–Impulsive (partial η2 = 0.20, p = 0.02). Symptom severity as rated by CGI-S scores decreased in 74.2% of the children. Conclusions This preliminary work on an Acceptance and Commitment Therapy-based child training in children affected by ADHD resulted in significant improvements, measured by a rating scale specific for ADHD

    Inhibiting the growth of 3D brain cancer models with bio-coronated liposomal temozolomide

    Get PDF
    Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical−chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy

    Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles

    Get PDF
    PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development

    CFBM - A Framework for Data Driven Approach in Agent-Based Modeling and Simulation

    Get PDF
    Recently, there has been a shift from modeling driven approach to data driven approach in Agent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models [1, 2]. In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, evaluation of the output of the simulation platform. That raises the question how to manage empirical data, simulation data and compare those data in such agent-based simulation platform. In this paper, we first introduce a logical framework for data driven approach in agent-based modeling and simulation. The introduced framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform). Secondly, we demonstrate the application of CFBM for data driven approach via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to initialize and validate the models. The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach

    Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines

    Get PDF
    Background/Aims: Head and neck squamous cell carcinoma (HNSCC) ranks sixth worldwide for tumor-related mortality. A subpopulation of tumor cells, termed cancer stem cells (CSCs), has the ability to support cancer growth. Therefore, profiling CSC-enriched populations could be a reliable tool to study cancer biology. Methods: We performed phenotypic characterization of 7 HNSCC cell lines and evaluated the presence of CSCs. CSCs from Hep-2 cell line and HNSCC primary cultures were enriched through sphere formation and sphere-forming cells have been characterized both in vitro and in vivo. In addition, we investigated the expression levels of Nicotinamide N-methyltransferase (NNMT), an enzyme overexpressed in several malignancies. Results: CSC markers were markedly expressed in Hep-2 cell line, which was found to be highly tumorigenic. CSC-enriched populations displayed increased expression of CSC markers and a strong capability to form tumors in vivo. We also found an overexpression of CSC markers in tumor formed by CSC-enriched populations. Interestingly, NNMT levels were significantly higher in CSC-enriched populations compared with parental cells. Conclusion: Our study provides an useful procedure for CSC identification and enrichment in HNSCC. Moreover, results obtained seem to suggest that CSCs may represent a promising target for an anticancer therapy

    Givinostat-Liposomes: Anti-Tumor Effect on 2D and 3D Glioblastoma Models and Pharmacokinetics

    Get PDF
    Glioblastoma is the most common and aggressive brain tumor, associated with poor prognosis and survival, representing a challenging medical issue for neurooncologists. Dysregulation of histone-modifying enzymes (HDACs) is commonly identified in many tumors and has been linked to cancer proliferation, changes in metabolism, and drug resistance. These findings led to the development of HDAC inhibitors, which are limited by their narrow therapeutic index. In this work, we provide the proof of concept for a delivery system that can improve the in vivo half-life and increase the brain delivery of Givinostat, a pan-HDAC inhibitor. Here, 150-nm-sized liposomes composed of cholesterol and sphingomyelin with or without surface decoration with mApoE peptide, inhibited human glioblastoma cell growth in 2D and 3D models by inducing a time-and dose-dependent reduction in cell viability, reduction in the receptors involved in cholesterol metabolism (from −25% to −75% of protein levels), and reduction in HDAC activity (−25% within 30 min). In addition, liposome-Givinostat formulations showed a 2.5-fold increase in the drug half-life in the bloodstream and a 6-fold increase in the amount of drug entering the brain in healthy mice, without any signs of overt toxicity. These features make liposomes loaded with Givinostat valuable as potential candidates for glioblastoma therapy
    corecore