91 research outputs found

    New Insight on the Bioactivity of Solanum aethiopicum Linn. Growing in Basilicata Region (Italy): Phytochemical Characterization, Liposomal Incorporation, and Antioxidant Effects

    Get PDF
    Food extract’s biological effect and its improvement using nanotechnologies is one of the challenges of the last and the future decades; for this reason, the antioxidant effect of scarlet eggplant extract liposomal incorporation was investigated. Scarlet eggplant (Solanum aethiopicum L.) is a member of the Solanaceae family, and it is one of the most consumed vegetables in tropical Africa and south of Italy. This study investigated the antioxidant activity and the phytochemical composition of S. aethiopicum grown in the Basilicata Region for the first time. The whole fruit, peel, and pulp were subjected to ethanolic exhaustive maceration extraction, and all extracts were investigated. The HPLC-DAD analysis revealed the presence of ten phenolic compounds, including hydroxycinnamic acids, flavanones, flavanols, and four carotenoids (one xanthophyll and three carotenes). The peel extract was the most promising, active, and the richest in specialized metabolites; hence, it was tested on HepG2 cell lines and incorporated into liposomes. The nanoincorporation enhanced the peel extract’s antioxidant activity, resulting in a reduction of the concentration used. Furthermore, the extract improved the expression of endogenous antioxidants, such as ABCG2, CAT, and NQO1, presumably through the Nrf2 pathway

    How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    Get PDF
    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further, it evidences zebrafish's potential for in vivo efficacy or toxicity screening of ubiquinone analogues or antiparasitic mitochondria-targeted drugs

    Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    Get PDF
    The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol) isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2), human neuroblastoma (SH-SY5Y), rat basophilic leukemia (RBL-2H3), murine macrophages (RAW.267) and Chinese hamster fibroblasts (V79). Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents

    Microbiological and chemical monitoring of Marsala base wine obtained by spontaneous fermentation during large-scale production

    Get PDF
    The present work was undertaken to evaluate the effect of the natural winemaking on the microbial and chemical composition of Marsala base wine. To this purpose, a large-scale vinification process of Grillo grape cultivar was monitored from harvesting to the final product. Total yeasts (TY) showed a rapid increase after must pressing and reached values almost superimposable to those registered during the conventional winemakings. Lactic acid bacteria (LAB) were registered at the highest levels simultaneously to yeast growth at the beginning of the process. Saccharomyces cerevisiae was the species found at the highest concentrations in all samples analysed. Several strains (n= 16) was registered at high levels during the alcoholic fermentation and/or aging of wine; only two of them were detected on the grape surface. Lactobacillus plantarum was the LAB species most frequently isolated during the entire vinification process. Ethanol content was approximately 14% (v/v) at the end of vinification. The value of pH did not greatly vary during the process and the volatile acidity (VA) was detected at low concentrations during the entire transformation. The concentration of malic acid rapidly decreased during the AF; on the other hand, lactic acid showed an irregular trend during the entire process. trans-caffeil tartaric acid was the most abundant hydroxycinnamoyl tartaric acid and volatile organic compounds (VOC) were mainly represented by isoamylic alcohol and isobutanol

    Further Insights on the Carotenoid Profile of the Echinoderm Marthasterias glacialis L.

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)In this study, the carotenoid profile of the echinoderm Marthasterias glacialis L. was established using HPLC-DAD-APCI-MS/MS equipped with a C-30 column. This approach rendered the identification of 20 compounds, eight of them reported for the first time in this marine organism. Differentiation of carotenoid isomers was also achieved.10714981510Fundacao para a Ciencia e a Tecnologia (FCT) [PEst-C/EQB/LA0006/2011]FCT [SFRH/BD/62663/2009]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao para a Ciencia e a Tecnologia (FCT) [PEst-C/EQB/LA0006/2011]FCT [SFRH/BD/62663/2009]FAPESP [2010/16522-8
    • …
    corecore