1,393 research outputs found

    Nitric oxide release from antimicrobial peptide hydrogels for wound healing

    Get PDF
    Nitric oxide (NO) is an endogenously produced molecule that has been implicated in several wound healing mechanisms. Its topical delivery may improve healing in acute or chronic wounds. In this study an antimicrobial peptide was synthesized which self-assembled upon a pH shift, forming a hydrogel. The peptide was chemically functionalized to incorporate a NO-donor moiety on lysine residues. The extent of the reaction was measured by ninhydrin assay and the NO release rate was quantified via the Griess reaction method. The resulting compound was evaluated for its antimicrobial activity against Escherichia coli, and its effect on collagen production by fibroblasts was assessed. Time-kill curves point to an initial increase in bactericidal activity of the functionalized peptide, and collagen production by human dermal fibroblasts when incubated with the NO-functionalized peptide showed a dose-dependent increase in the presence of the NO donor within a range of 0–20 µM.This work was financed by FEDER (Fundo Europeu de Desenvolvimento Regional) funds via COMPETE 2020 (Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020), and by Portuguese funds through FCT (Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior) in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and PTDC/QUI-QFI/29914/2017, as well through the grant SFRH/BD/84914/2012. Thanks to FCT also for supporting Research Unit LAQV-REQUIMTE through the project UID/QUI/5006/2013

    A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae subsp. piscicida Cleaves the Peptidoglycan of Potentially Competing Bacteria

    Get PDF
    Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-contain-ing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA (Photobacterium NlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the ¿-D-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus. This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG. IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.We are grateful for access to the HTX crystallization facility (Proposal ID: BIOSTRUCTX_8167). The support of the X-ray Crystallography Scientific Platform of i3S (Porto, Portugal) is also acknowledged. This work was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020 Operacional Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT) in the framework of the project POCI-01-0145-FEDER-030018 M8(PTDC/CVT-CVT/30018/2017). A.D.V. was supported by national funds from Fundação para a Ciência e a Tecnologia (FCT), I.P., within the scope of the Norma Transitória - DL57/2016/CP1355/ CT0010. This work had also support from the State Agency for Research (AEI) of Spain cofunded by the FEDER Program from the European Union (grants AGL2016-79738-R and BIO2016-77639-P) and from the French Government’s Investissement d’Avenir program, Laboratoire d´Excellence “Integrative Biology of Emerging Infectious Diseases” (grant ANR-10-LABX-62-IBEID; http://www.agence-nationale-recherche.fr/investissements-d-avenir/). AR. was supported by a postdoctoral fellowship from the Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” and from an Infec-ERA grant (INTRABACWALL- 16-IFEC-0004-03)

    Parental education and perception of outdoor playing time for preschoolers

    Get PDF
    Abstract Aim: The objective of this study was to analyze whether or not socioeconomic positions influence outdoor playtime during the week (WK) and on the weekends (WEND). Methods: The sample consisted of 485 (girls; n=223) healthy preschoolers, aged from 3 to 6 years, enrolled in kindergartens from the metropolitan area of Porto, Portugal. Physical Activity (PA) was assessed for 7 consecutive days with an accelerometer. The time playing outdoors during the WK or the WEND was reported by parents. Anthropometric data (weight and height) was collected following standardized protocols. Socioeconomic position was assessed by Parental Education (PE), according to the Portuguese education system. Results: We found differences in time spent playing outdoors either for the WK or WEND, but not for Total PA (TPA), in both sexes. However, regression analysis showed that after age adjustment, BMI and TPA for both sexes, we only found significant associations between low PE (LPE) and high PE (HPE) groups on WK or WEND. However, we found no statistically significant association for boys on the WK (p=0.06). Conclusion: Our findings suggest that socioeconomic position can influence the children’s time spent in outdoor activities, especially on the weekends. This may have implications for future interventions with this age group

    Capturing the essence of folding and functions of biomolecules using Coarse-Grained Models

    Full text link
    The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example during chromosome organization. Describing phenomena that cover such diverse length, and also time scales, requires models that capture the underlying physics for the particular length scale of interest. Theoretical ideas, in particular, concepts from polymer physics, have guided the development of coarse-grained models to study folding of DNA, RNA, and proteins. More recently, such models and their variants have been applied to the functions of biological nanomachines. Simulations using coarse-grained models are now poised to address a wide range of problems in biology.Comment: 37 pages, 8 figure

    Intercalated theophylline-smectite hybrid for pH-mediated delivery

    Get PDF
    On the basis of their large specific surface areas, high adsorption and cation exchange capacities, swelling potential and low toxicity, natural smectite clays are attractive substrates for the gastric protection of neutral and cationic drugs. Theophylline is an amphoteric xanthine derivative that is widely used as a bronchodilator in the treatment of asthma and chronic obstructive pulmonary disease. This study considers the in vitro uptake and release characteristics of the binary theophylline-smectite system. The cationic form of theophylline was readily ion exchanged into smectite clay at pH 1.2 with a maximum uptake of 67±2 mg g−1. Characterisation of the drug-clay hybrid system by powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy confirmed that the theophylline had been exclusively intercalated into the clay system in an amorphous form. The drug remained bound within the clay under simulated gastric conditions at pH 1.2; and the prolonged release of approximately 40% of the drug was observed in simulated intestinal fluid at pH 6.8 and 7.4 within a 2-h timeframe. The incomplete reversibility of the intercalation process was attributed to chemisorption of the drug within the clay lattice. These findings indicate that smectite clay is a potentially suitable vehicle for the safe passage of theophylline into the duodenum. Protection from absorption in the stomach and subsequent prolonged release in the small intestine are advantageous in reducing fluctuations in serum concentration which may impact therapeutic effect and toxicit

    A novel approach to improve cardiac performance: cardiac myosin activators

    Get PDF
    Decreased systolic function is a central factor in the pathogenesis of heart failure, yet there are no safe medical therapies to improve cardiac function in patients. Currently available inotropes, such as dobutamine and milrinone, increase cardiac contractility at the expense of increased intracellular concentrations of calcium and cAMP, contributing to increased heart rate, hypotension, arrhythmias, and mortality. These adverse effects are inextricably linked to their inotropic mechanism of action. A new class of pharmacologic agents, cardiac myosin activators, directly targets the kinetics of the myosin head. In vitro studies have demonstrated that these agents increase the rate of effective myosin cross-bridge formation, increasing the duration and amount of myocyte contraction, and inhibit non-productive consumption of ATP, potentially improving myocyte energy utilization, with no effect on intracellular calcium or cAMP. Animal models have shown that this novel mechanism increases the systolic ejection time, resulting in improved stroke volume, fractional shortening, and hemodynamics with no effect on myocardial oxygen demand, culminating in significant increases in cardiac efficiency. A first-in-human study in healthy volunteers with the lead cardiac myosin activator, CK-1827452, as well as preliminary results from a study in patients with stable chronic heart failure, have extended these findings to humans, demonstrating significant increases in systolic ejection time, fractional shortening, stroke volume, and cardiac output. These studies suggest that cardiac myosin activators offer the promise of a safe and effective treatment for heart failure. A program of clinical studies are being planned to test whether CK-1827452 will fulfill that promise

    Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity

    Get PDF
    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana – potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked

    Glucose-6-Phosphate Dehydrogenase Deficiency in an Endemic Area for Malaria in Manaus: A Cross-Sectional Survey in the Brazilian Amazon

    Get PDF
    BACKGROUND: There is a paucity of information regarding glucose-6-phosphate dehydrogenase (G6PD) deficiency in endemic areas for malaria in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: This study determined the prevalence of the G6PD deficiency in 200 male non-consanguineous individuals residing in the Ismail Aziz Community, on the outskirts of Manaus (Brazilian Amazon). Six individuals (3%) were deficient using the qualitative Brewer's test. Gel electrophoresis showed that five of these patients were G6PD A(-). The deficiency was not associated with the ethnic origin (P = 0.571). In a multivariate logistic regression analysis, G6PD deficiency protected against three or more episodes of malaria (P = 0.049), independently of the age, and was associated with a history of jaundice (P = 0.020) and need of blood transfusion (P = 0.045) during previous treatment for malarial infection, independently of the age and the previous malarial exposure. CONCLUSIONS/SIGNIFICANCE: The frequency of G6PD deficiency was similar to other studies performed in Brazil and the finding of a predominant G6PD A(-) variant will help the clinical management of patients with drug-induced haemolysis. The history of jaundice and blood transfusion during previous malarial infection may trigger the screening of patients for G6PD deficiency. The apparent protection against multiple malarial infections in an area primarily endemic for Plasmodium vivax needs further investigation
    corecore