260 research outputs found

    Taxonomic status of Myotis occultus

    Get PDF
    The taxonomic status of the Arizona myotis (Myotis occultus) is uncertain. Although the taxon was described as a distinct species and currently is regarded as such by some authors, others have noted what they interpreted as intergradation with the little brown bat (M. lucifugus carissima) near the Colorado-New Mexico state line. In this study, we used protein electrophoresis to compare bats of these nominal taxa. We examined 20 loci from 142 specimens referable to M. occultus and M. lucifugus from New Mexico, Colorado, and Wyoming. Nine of the 20 loci were polymorphic. Results show that there were high similarities among samples, no fixed alleles, and minor divergence from Hardy-Weinberg equilibrium. Our results suggest that the two nominal taxa represent only one species and that M. occultus should be regarded as a subspecies of M. lucifugus

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    stairs and fire

    Get PDF

    Late-Seasonal A ctivity and Diet of the Eveninc Bat (Nycticeius Humeralis) in Nebraska

    Get PDF
    In North America, Nebraska represents part of the northwestern edge of the distribution for the evening bat (Nycticeius humeralis). To date, little information on this bat’s natural history has been published from the state or from other parts of the Great Plains. Here we report on aspects of its natural history in Nebraska from 2 localities. In late summer and early autumn of 2006, we documented individuals farther west in Nebraska (Harlan County) than previously reported and determined that individuals fed mainly on Coleoptera and Hymenoptera. In 2006, evening bats appeared to migrate from Nebraska during late September–early October, and individuals were extremely fat, about 15 g, prior to migration. Evening bats likely are more widespread and common in south central Nebraska than previously documented. On 6 October 2005, we reported on an individual from eastern Nebraska (Douglas County), which represents the latest seasonal record of N. humeralis from the state

    Mammal Inventories for Eight National Parks in the Southern Colorado Plateau Network

    Get PDF
    Historically, the Colorado Plateau has been the subject of many geological and biological explorations. J. W. Powell explored and mapped the canyon country of the Colorado River in 1869 (Powell 1961). C. H. Merriam, V. Bailey, M. Cary, and other employees of the Bureau of Biological Survey conducted biological explorations of the area in the late 1800s. In recent times, researchers such as S. D. Durrant (1952), Durrant and Robinson (1962), D. M. Armstrong (1972), J. S. Findley et al. (1975), D. F. Hoffmeister (1986), and J. Fitzgerald et al. (1994) have made considerable contributions to our understanding of the fauna of the Colorado Plateau. Despite earlier efforts, biological details on many regions of the plateau have remained insufficiently explored. In an effort to gather valuable biological information, the National Park Service (NPS) initiated a nationwide program to inventory vascular plants and vertebrates on NPS lands (Stuart 2000). The U.S. Geological Survey, Fort Collins Science Center, Arid Lands Field Station became a cooperator on this effort in 2001, when we began mammalian inventories on five parks within the NPS Southern Colorado Plateau Network (SCPN): Aztec Ruins National Monument (AZRU), El Morro National Monument (ELMO), Petroglyph National Monument (PETR), Salinas Pueblo Missions National Monument (SAPU), and Yucca House National Monument (YUHO). Existing baseline data on mammalian occurrences in these parks varied from very sparse to moderate, with little information available for most parks. In most cases, information was insufficient to assess the status of species of local concern. A final report on inventory eff orts on these five parks was submitted in February 2004 (Bogan et al. 2004). In 2003, biologists from the Arid Lands Field Station began work on three additional parks in the SCPN: Bandelier National Monument (BAND), Chaco Culture National Historical Park (CHCU), and El Malpaís National Monument (ELMA). The primary emphasis at these three parks was on non-volant mammals, as personnel from the Field Station had worked earlier on bats at all three parks (Bogan et al. 1998, Valdez et al. 2002a, 2002b). A final report on inventories at these three parks was submitted in April 2005. This publication details fieldwork conducted in all eight parks from 2001–2004. The information that appears here was originally contained in two separate reports that have been combined in order to make it easier for readers to find information on SCPN mammal inventories. To remain faithful to the original reports, and because of slightly differing objectives, personnel, and emphases at the two sets of parks, we have generally presented the methods, results, and recommendations separately for the 5-park and 3-park inventories

    Birds in thermal video imagery and corresponding views from other surveillance cameras.

    No full text
    <p>Comparison of the thermal surveillance (TS) and wide dynamic range (WDR) cameras. Upper panel: still images from the TS (top row) and WDR (middle row) videos show a small bird near a solar tower over three consecutive seconds. Lower panel: still images from TS (left) and WDR far- (center) and near-view (right) videos showing the simultaneous detection of a medium-sized, falcon-like bird. Red circles in thermal frames show automatic target detection by processing software and green arrows show the corresponding bird in the WDR visual image.</p

    Variation in animal detections throughout the 24-hour day by radar in May (left) and September (right).

    No full text
    <p>Top) The number of tracks associated with vertebrate-like targets (blue) and invertebrate-like targets (red) cumulated for each hour throughout the 24-hour cycle from 14–22 May 2014 and 3–11 September 2014. Points show the number of tracks associated with each hour summed across all days, and the loess fit with 95% confidence limits captures trends in the data. Bottom) The corresponding relative proportion of invertebrates with loess fit and 95% confidence limits. A darker horizontal line indicates the 0.5 proportion level.</p
    corecore