4,305 research outputs found
Recommended from our members
The importance of moisture distribution for the growth and energetics of mid-latitude systems
A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, 'control' and 'doubled CO2' life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture
Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins
IndexaciĂłn: Web of ScienceThe evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long term survival of the species.http://onlinelibrary.wiley.com/doi/10.1002/ece3.2502/epd
A Deep Multicolor Survey. VI. Near-Infrared Observations, Selection Effects, and Number Counts
I present near-infrared J (1.25um), H (1.65um), and K (2.2um) imaging
observations of 185 square arcminutes in 21 high galactic latitude fields.
These observations reach limiting magnitudes of J ~ 21 mag, H ~ 20 mag and K ~
18.5 mag. The detection efficiency, photometric accuracy and selection biases
as a function of integrated object brightness, size, and profile shape are
quantified in detail. I evaluate several popular methods for measuring the
integrated light of faint galaxies and show that only aperture magnitudes
provide an unbiased measure of the integrated light that is independent of
apparent magnitude. These J, H, and K counts and near-infrared colors are in
best agreement with passive galaxy formation models with at most a small amount
of merging (for Omega_M = 0.3, Omega_Lambda = 0.7).Comment: AJ Accepted (Feb 2001). 28 pages, 7 embedded ps figures, AASTEX5.
Minor changes to submitted version. Also available at
http://www.astronomy.ohio-state.edu/~martini/pubs
A Quantitative Evaluation of the Galaxy Component of COSMOS and APM Catalogs
We have carried out an independent quantitative evaluation of the galaxy
component of the "COSMOS/UKST Southern Sky Object Catalogue" (SSC) and the
"APM/UKST J Catalogue" (APM). Using CCD observations our results corroborate
the accuracy of the photometry of both catalogs, which have an overall
dispersion of about 0.2 mag in the range 17 <= b_J <= 21.5. The SSC presents
externally calibrated galaxy magnitudes that follow a linear relation, while
the APM instrumental magnitudes of galaxies, only internally calibrated by the
use of stellar profiles, require second-order corrections. The completeness of
both catalogs in a general field falls rapidly fainter than b_J = 20.0, being
slightly better for APM. The 90% completeness level of the SSC is reached
between b_J = 19.5 and 20.0, while for APM this happens between b_J = 20.5 and
21.0. Both SSC and APM are found to be less complete in a galaxy cluster field.
Galaxies misclassified as stars in the SSC receive an incorrect magnitude
because the stellar ones take saturation into account besides using a different
calibration curve. In both cases, the misclassified galaxies show a large
diversity of colors that range from typical colors of early-types to those of
blue star-forming galaxies. A possible explanation for this effect is that it
results from the combination of low sampling resolutions with properties of the
image classifier for objects with characteristic sizes close to the
instrumental resolution. We find that the overall contamination by stars
misclassified as galaxies is < 5% to b_J = 20.5, as originally estimated for
both catalogs. Although our results come from small areas of the sky, they are
extracted from two different plates and are based on the comparison with two
independent datasets.Comment: 14 pages of text and tables, 8 figures; to be published in the
Astronomical Journal; for a single postscript version file see
ftp://danw.on.br/outgoing/caretta/caretta.p
SMASH 1 : A VERY FAINT GLOBULAR CLUSTER DISRUPTING in the OUTER REACHES of the LMC?
We present the discovery of a very faint stellar system, SMASH 1, that is potentially a satellite of the Large Magellanic Cloud. Found within the Survey of the Magellanic Stellar History (SMASH), SMASH 1 is a compact (rh=9.1-3.4+5.9pc) and very low luminosity (Mv=-1.0±0.9,Lv=102.3±0.4Lâ ) stellar system that is revealed by its sparsely populated main sequence and a handful of red giant branch candidate member stars. The photometric properties of these stars are compatible with a metal-poor ([Fe/H]=-2.2) and old (13 Gyr) isochrone located at a distance modulus of âŒ18.8, i.e., a distance of . Situated at 11.°3 from the LMC in projection, its three-dimensional distance from the Cloud is 13 kpc, consistent with a connection to the LMC, whose tidal radius is at least . Although the nature of SMASH 1 remains uncertain, its compactness favors it being a stellar cluster and hence dark-matter free. If this is the case, its dynamical tidal radius is only âČ19 pc at this distance from the LMC, and smaller than the system's extent on the sky. Its low luminosity and apparent high ellipticity (Ï”=0.62-0.21+0.17) with its major axis pointing toward the LMC may well be the tell-tale sign of its imminent tidal demise.Peer reviewe
SPITZER IRS spectra of Virgo early type galaxies: detection of stellar silicate emission
We present high signal to noise ratio Spitzer Infrared Spectrograph
observations of 17 Virgo early-type galaxies. The galaxies were selected from
those that define the colour-magnitude relation of the cluster, with the aim of
detecting the silicate emission of their dusty, mass-losing evolved stars. To
flux calibrate these extended sources we have devised a new procedure that
allows us to obtain the intrinsic spectral energy distribution and to
disentangle resolved and unresolved emission within the same object. We have
found that thirteen objects of the sample (76%) are passively evolving galaxies
with a pronounced broad silicate feature which is spatially extended and likely
of stellar origin, in agreement with model predictions. The other 4 objects
(24%) are characterized by different levels of activity. In NGC 4486 (M 87) the
line emission and the broad silicate emission are evidently unresolved and,
given also the typical shape of the continuum, they likely originate in the
nuclear torus. NGC 4636 shows emission lines superimposed on extended (i.e.
stellar) silicate emission, thus pushing the percentage of galaxies with
silicate emission to 82%. Finally, NGC 4550 and NGC 4435 are characterized by
polycyclic aromatic hydrocarbon (PAH) and line emission, arising from a central
unresolved region. A more detailed analysis of our sample, with updated models,
will be presented in a forthcoming paper.Comment: 6 pages; ApJ Letters, accepte
Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales
Most of the matter in the universe is not luminous and can be observed
directly only through its gravitational effect. An emerging technique called
weak gravitational lensing uses background galaxies to reveal the foreground
dark matter distribution on large scales. Light from very distant galaxies
travels to us through many intervening overdensities which gravitationally
distort their apparent shapes. The observed ellipticity pattern of these
distant galaxies thus encodes information about the large-scale structure of
the universe, but attempts to measure this effect have been inconclusive due to
systematic errors. We report the first detection of this ``cosmic shear'' using
145,000 background galaxies to reveal the dark matter distribution on angular
scales up to half a degree in three separate lines of sight. The observed
angular dependence of this effect is consistent with that predicted by two
leading cosmological models, providing new and independent support for these
models.Comment: 18 pages, 5 figures: To appear in Nature. (This replacement fixes tex
errors and typos.
The Evolution of Early-Type Galaxies in Distant Clusters
We present results from an optical-IR photometric study of early-type
galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on
the basis of morphologies determined from HST WFPC2 images, and is
photometrically defined in the K-band to minimize redshift-dependent selection
biases. The optical-IR colors of the early-type cluster galaxies become bluer
with increasing redshift in a manner consistent with the passive evolution of
an old stellar population formed at an early cosmic epoch. The degree of color
evolution is similar for clusters at similar redshift, and does not depend
strongly on the optical richness or X-ray luminosity of the cluster, suggesting
that the history of early-type galaxies is relatively insensitive to
environment. The slope of the color-magnitude relationship shows no significant
change out to z=0.9, providing evidence that it arises from a correlation
between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in
the optical-IR colors is small and nearly constant with redshift, indicating
that the majority of giant, early-type galaxies in clusters share a common star
formation history, with little perturbation due to uncorrelated episodes of
later star formation. Taken together, our results are consistent with models in
which most early-type galaxies in rich clusters are old, formed the majority of
their stars at high redshift in a well-synchronized fashion, and evolved
quiescently thereafter.Comment: 55 pages, 24 figures, uses AASTeX. Accepted for publication in The
Astrophysical Journa
Observation of Dirac plasmons in a topological insulator
Plasmons are the quantized collective oscillations of electrons in metals and
doped semiconductors. The plasmons of ordinary, massive electrons are since a
long time basic ingredients of research in plasmonics and in optical
metamaterials. Plasmons of massless Dirac electrons were instead recently
observed in a purely two-dimensional electron system (2DEG)like graphene, and
their properties are promising for new tunable plasmonic metamaterials in the
terahertz and the mid-infrared frequency range. Dirac quasi-particles are known
to exist also in the two-dimensional electron gas which forms at the surface of
topological insulators due to a strong spin-orbit interaction. Therefore,one
may look for their collective excitations by using infrared spectroscopy. Here
we first report evidence of plasmonic excitations in a topological insulator
(Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W
and period 2W to select suitable values of the plasmon wavevector k. Their
lineshape was found to be extremely robust vs. temperature between 6 and 300 K,
as one may expect for the excitations of topological carriers. Moreover, by
changing W and measuring in the terahertz range the plasmonic frequency vP vs.
k we could show, without using any fitting parameter, that the dispersion curve
is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013
- âŠ