We present high signal to noise ratio Spitzer Infrared Spectrograph
observations of 17 Virgo early-type galaxies. The galaxies were selected from
those that define the colour-magnitude relation of the cluster, with the aim of
detecting the silicate emission of their dusty, mass-losing evolved stars. To
flux calibrate these extended sources we have devised a new procedure that
allows us to obtain the intrinsic spectral energy distribution and to
disentangle resolved and unresolved emission within the same object. We have
found that thirteen objects of the sample (76%) are passively evolving galaxies
with a pronounced broad silicate feature which is spatially extended and likely
of stellar origin, in agreement with model predictions. The other 4 objects
(24%) are characterized by different levels of activity. In NGC 4486 (M 87) the
line emission and the broad silicate emission are evidently unresolved and,
given also the typical shape of the continuum, they likely originate in the
nuclear torus. NGC 4636 shows emission lines superimposed on extended (i.e.
stellar) silicate emission, thus pushing the percentage of galaxies with
silicate emission to 82%. Finally, NGC 4550 and NGC 4435 are characterized by
polycyclic aromatic hydrocarbon (PAH) and line emission, arising from a central
unresolved region. A more detailed analysis of our sample, with updated models,
will be presented in a forthcoming paper.Comment: 6 pages; ApJ Letters, accepte