60 research outputs found

    Enzymatic Logic Gates with Noise-Reducing Sigmoid Response

    Full text link
    Biochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an AND logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean AND functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.Comment: 14 pages, 2 figures, PD

    Enzyme Immobilization on Maghemite Nanoparticles with Improved Catalytic Activity: An Electrochemical Study for Xanthine

    Get PDF
    Generally, enzyme immobilization on nanoparticles leads to nano-conjugates presenting partially preserved, or even absent, biological properties. Notwithstanding, recent research demonstrated that the coupling to nanomaterials can improve the activity of immobilized enzymes. Herein, xanthine oxidase (XO) was immobilized by self-assembly on peculiar naked iron oxide nanoparticles (surface active maghemite nanoparticles, SAMNs). The catalytic activity of the nanostructured conjugate (SAMN@XO) was assessed by optical spectroscopy and compared to the parent enzyme. SAMN@XO revealed improved catalytic features with respect to the parent enzyme and was applied for the electrochemical studies of xanthine. The present example supports the nascent knowledge concerning protein conjugation to nanoparticle as a means for the modulation of biological activity

    Ozonated water and chlorine effects on the antioxidant properties of organic and conventional broccoli during postharvest.

    Get PDF
    There is growing interest in studies on sanitizers other than chlorine that can maintain the quality of organic products without affecting their phytochemical content. The effects of using chlorinated and ozonized water treatments, as sanitizing procedures, on the post-harvest quality of organic and conventional broccoli (Brassica oleracea L.) cv. Italica was evaluated. The biochemical parameters (chlorophyll, polyphenols, flavonoids, vitamin C and antioxidant capacity) of the broccoli samples were analyzed at day 0 (arrival of the plant from the field, original features), and 1, 4 and 7 days after harvest. The polyamine analysis was performed on arrival of the plant from the field and on the first and seventh days. The cultivation procedure influenced polyphenol, vitamin C and total chlorophyll content, and the highest value was observed in organic broccoli after the fourth day. Flavenoid content was higher in organic broccoli. The use of ozone appears not to have had an influence on the amount of polyphenolic, flavonoids and vitamin C during storage. Total chlorophyll content was less affected by ozonized water than by the chlorine treatment as at the first and fourth days of storage. The highest content of putrescine was found in conventional broccoli, while the highest levels of spermidine and spermine were found in organic broccoli. Antioxidant capacity was highest in organic broccoli after day 4 of storage and was affected by the bioactive compounds analyzed. Methods of cultivation influenced natural antioxidant and chlorophyll contents in broccoli under cold storage

    Enzymatic AND-Gate Based on Electrode-Immobilized Glucose-6-Phosphate Dehydrogenase: Towards Digital Biosensors and Biochemical Logic Systems with Low Noise

    Full text link
    Electrode-immobilized glucose-6-phosphate dehydrogenase is used to catalyze an enzymatic reaction which carries out the AND logic gate. This logic function is considered here in the context of biocatalytic processes utilized for the biocomputing applications for "digital" (threshold) sensing/actuation. We outline the response functions desirable for such applications and report the first experimental realization of a sigmoid-shape response in one of the inputs. A kinetic model is developed and utilized to evaluate the extent to which the experimentally realized gate is close to optimal

    Polymer brush modified electrode with switchable selectivity triggered by pH changes enhanced by gold nanoparticles

    No full text
    In this work, a sensor was built up with smart material based on polymer brush and gold nanoparticles. The modified electrode functionalized with polyacrylic acid (PAA) tethered to indium tin oxide (ITO) and covered with gold nanoparticle (ITO/PAA/Au) demonstrated switchable interfacial properties discriminating different pHs. The switchable electrochemical and plasmonic process was characterized by cyclic voltammetry (CV), electrochemistry impedance spectroscopy (EIS), and localized surface plasmon resonance (LSPR).Neste trabalho foi desenvolvido um sensor com propriedades inteligentes, baseado em polímeros escova (poli-ácido acrílico) modificado com nanopartículas de ouro. Este novo material demonstrou propriedades comutáveis que podem discriminar diferentes pHs. O eletrodo foi caracterizado por voltametria cíclica (CV), espectroscopia de impedância eletroquímica (EIS) e ressonância plasmônica de superfície localizada (LSPR)

    Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes

    No full text
    The anodic voltammetric behavior of 4-Nitrophenol on a Boron-doped diamond electrode in aqueous solution has been studied using square wave voltammetry. After optimization of the experimental conditions, that model molecule was analyzed in pure water solutions using a Britton-Robinson buffer with pH 6.0 as the supporting electrolyte. Oxidation occurs at 1.0 V vs. Ag/AgCl in an irreversible two-electron process controlled by adsorption of the species. The detection limit (DL) obtained was 2.8 mug L-1. This result was comparable to that obtained from reduction of the molecule at -0.8 V vs. Ag/AgCl under the same experimental conditions (DL = 4.2 mug L-1). Both DL values are within the limits required by the legislation for drinking water (30 mug L-1). The combination of square wave voltammetry and diamond electrodes has proved to be an interesting and desirable alternative for the analytical determination of organic molecules
    • …
    corecore