271 research outputs found

    Recommendations for headache service organisation and delivery in Europe.

    Get PDF
    Headache disorders are a major public-health priority, and there is pressing need for effective solutions to them. Better health care for headache—and ready access to it—are central to these solutions; therefore, the organisation of headache-related services within the health systems of Europe becomes an important focus. These recommendations are the result of collaboration between the European Headache Federation and Lifting The Burden: the Global Campaign against Headache. The process of development included wide consultation. To meet the very high level of need for headache care both effectively and efficiently, the recommendations formulate a basic three-level model of health-care organisation rationally spread across primary and secondary health-care sectors, taking account of the different skills and expertise in these sectors. They recognise that health services are differently structured in countries throughout Europe, and not always adequately resourced. Therefore, they aim to be adaptable to suit these differences. They are set out in five sections: needs assessment, description of the model, adaptation, standards and educational implications

    Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes

    Get PDF
    Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes

    Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements

    Get PDF
    Abstract The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas‐and‐ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum‐driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small‐to‐moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit

    Magma pressure discharge induces very long period seismicity

    Get PDF

    Proposals for the organisation of headache services in Europe.

    Get PDF
    The mission of the European Headache Federation (EHF) is to improve life for those affected by headache disorders in Europe. Progress depends upon improving access to good headache-related health care for people affected by these disorders. Education about headache-its nature, causes, consequences and management-is a key activity of EHF that supports this aim. It is also important to achieve an organisation of headache-related services within the health systems of Europe in order that they can best deliver care in response to what are very high levels of need. This publication assesses this need, and sets out proposals for service organisation, on three levels, to meet the resultant demand

    Temporal and spatial variations in the parasitoid complex of the horse chestnut leafminer during its invasion of Europe

    Get PDF
    The enemy release hypothesis posits that the initial success of invasive species depends on the scarcity and poor adaptation of native natural enemies such as predators and parasitoids. As for parasitoids, invading hosts are first attacked at low rates by a species-poor complex of mainly generalist species. Over the years, however, parasitoid richness may increase either because the invading host continuously encounters new parasitoid species during its spread (geographic spread-hypothesis) or because local parasitoids need different periods of time to adapt to the novel host (adjustment-hypothesis). Both scenarios should result in a continuous increase of parasitoid richness over time. In this study, we reconstructed the development of the hymenopteran parasitoid complex of the invasive leafminer Cameraria ohridella (Lepidoptera, Gracillariidae). Our results show that the overall parasitism rate increases as a function of host residence time as well as geographic and climatic factors, altogether reflecting the historic spread of C. ohridella. The same variables also explain the individual parasitism rates of several species in the parasitoid complex, but fail to explain the abundance of others. Evidence supporting the “geographic spread-hypothesis” was found in the parasitism pattern of Cirrospilus talitzkii (Hymenoptera, Eulophidae), while that of Pediobius saulius, another eulophid, indicated an increase of parasitism rates by behavioral, phenological or biological adjustments. Compared to fully integrated host-parasitoid associations, however, parasitism rates of C. ohridella are still very low. In addition, the parasitoid complex lacks specialists, provided that the species determined are valid and not complexes of cryptic (and presumably more specialized) species. Probably, the adjustment of specialist parasitoids requires more than a few decades, particularly to invaders which establish in ecological niches free of native hosts, thus eliminating any possibility of recruitment of pre-adapted parasitoids

    Recommendations for headache service organisation and delivery in Europe.

    Get PDF
    Headache disorders are a major public-health priority, and there is pressing need for effective solutions to them. Better health care for headache-and ready access to it-are central to these solutions; therefore, the organisation of headache-related services within the health systems of Europe becomes an important focus. These recommendations are the result of collaboration between the European Headache Federation and Lifting The Burden: the Global Campaign against Headache. The process of development included wide consultation. To meet the very high level of need for headache care both effectively and efficiently, the recommendations formulate a basic three-level model of health-care organisation rationally spread across primary and secondary health-care sectors, taking account of the different skills and expertise in these sectors. They recognise that health services are differently structured in countries throughout Europe, and not always adequately resourced. Therefore, they aim to be adaptable to suit these differences. They are set out in five sections: needs assessment, description of the model, adaptation, standards and educational implications

    Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The MOUNTS monitoring system

    Get PDF
    Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards
    corecore