24 research outputs found

    Influence of fermentable carbohydrates or protein on large intestinal and urinary metabolomic profiles in piglets

    Get PDF
    It was recently shown that variations in the ratio of dietary fermentable carbohydrates (fCHO) and fermentable protein (fCP) differentially affect large intestinal microbial ecology and the mucosal response. Here we investigated the use of mass spectrometry to profile changes in metabolite composition in colon and urine associated with variation in dietary fCHO and fCP composition and mucosal physiology. Thirty-two weaned pigletswere fed 4 diets in a 2 × 2 factorial design with low fCP and low fCHO, low fCP and high fCHO, high fCP and low fCHO, and high fCP and high fCHO. After 21 to 23 d, all pigs were euthanized and colon digesta and urine metabolite profiles were obtained by mass spectrometry. Analysis of mass spectra by partial least squares approach indicated a clustering of both colonic and urinary profiles for each pig by feeding group. Metabolite identification and annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed increased abundance of metabolites associated with arachidonic acid metabolism in colon of pigs fed a high concentration of fCP irrespective of dietary fCHO. Urinary metabolites did not show as clear patterns. Mass spectrometry can effectively differentiate metabolite profiles in colon contents and urine associated with changes in dietary composition. Whether metabolite profiling is an effective tool to identify specific metabolites (biomarkers) or metabolite profiles associated with gut function and integrity needs further elucidation

    Effect of Biocontrol Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere Using T-RFLP and DGGE

    Get PDF
    Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 108 to 105 CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient

    The Effect of Feeding Bt MON810 Maize to Pigs for 110 Days on Intestinal Microbiota

    Get PDF
    Objective: To assess the effects of feeding Bt MON810 maize to pigs for 110 days on the intestinal microbiota. Methodology/Principal Findings: Forty male pigs (,40 days old) were blocked by weight and litter ancestry and assigned to one of four treatments; 1) Isogenic maize-based diet for 110 days (Isogenic); 2) Bt maize-based diet (MON810) for 110 days (Bt); 3) Isogenic maize-based diet for 30 days followed by a Bt maize-based diet for 80 days (Isogenic/Bt); 4) Bt maizebased diet for 30 days followed by an isogenic maize-based diet for 80 days (Bt/Isogenic). Enterobacteriaceae, Lactobacillus and total anaerobes were enumerated in the feces using culture-based methods on days 0, 30, 60 and 100 of the study and in ileal and cecal digesta on day 110. No differences were found between treatments for any of these counts at any time point. The relative abundance of cecal bacteria was also determined using high-throughput 16 S rRNA gene sequencing. No differences were observed in any bacterial taxa between treatments, with the exception of the genus Holdemania which was more abundant in the cecum of pigs fed the isogenic/Bt treatment compared to pigs fed the Bt treatment (0.012 vs 0.003%; P#0.05). Conclusions/Significance: Feeding pigs a Bt maize-based diet for 110 days did not affect counts of any of the culturable bacteria enumerated in the feces, ileum or cecum. Neither did it influence the composition of the cecal microbiota, with the exception of a minor increase in the genus Holdemania. As the role of Holdemania in the intestine is still under investigatio

    Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies

    Full text link

    Influence of fermentable carbohydrates or protein on large intestinal and urinary metabolomic profiles in piglets

    Full text link
    peer reviewedIt was recently shown that variations in the ratio of dietary fermentable carbohydrates (fCHO) and fermentable protein (fCP) differentially affect large intestinal microbial ecology and the mucosal response. Here we investigated the use of mass spectrometry to profile changes in metabolite composition in colon and urine associated with variation in dietary fCHO and fCP composition and mucosal physiology. Thirty-two weaned pigletswere fed 4 diets in a 2 × 2 factorial design with low fCP and low fCHO, low fCP and high fCHO, high fCP and low fCHO, and high fCP and high fCHO. After 21 to 23 d, all pigs were euthanized and colon digesta and urine metabolite profiles were obtained by mass spectrometry. Analysis of mass spectra by partial least squares approach indicated a clustering of both colonic and urinary profiles for each pig by feeding group. Metabolite identification and annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed increased abundance of metabolites associated with arachidonic acid metabolism in colon of pigs fed a high concentration of fCP irrespective of dietary fCHO. Urinary metabolites did not show as clear patterns. Mass spectrometry can effectively differentiate metabolite profiles in colon contents and urine associated with changes in dietary composition. Whether metabolite profiling is an effective tool to identify specific metabolites (biomarkers) or metabolite profiles associated with gut function and integrity needs further elucidation

    Post weaning diarrhea in pigs: risk factors and non‑colistin‑based control strategies

    Get PDF
    Post-weaning diarrhea (PWD) is one of the most serious threats for the swine industry worldwide. It is commonly associated with the proliferation of enterotoxigenic Escherichia coli in the pig intestine. Colistin, a cationic antibiotic, is widely used in swine for the oral treatment of intestinal infections caused by E. coli, and particularly of PWD. However, despite the effectiveness of this antibiotic in the treatment of PWD, several studies have reported high rates of colistin resistant E. coli in swine. Furthermore, this antibiotic is considered of very high importance in humans, being used for the treatment of infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). Moreover, the recent discovery of the mcr-1 gene encoding for colistin resistance in Enterobacteriaceae on a conjugative stable plasmid has raised great concern about the possible loss of colistin effectiveness for the treatment of MDR-GNB in humans. Consequently, it has been proposed that the use of colistin in animal production should be considered as a last resort treatment only. Thus, to overcome the economic losses, which would result from the restriction of use of colistin, especially for prophylactic purposes in PWD control, we believe that an understanding of the factors contributing to the development of this disease and the putting in place of practical alternative strategies for the control of PWD in swine is crucial. Such alternatives should improve animal gut health and reduce economic losses in pigs without promoting bacterial resistance. The present review begins with an overview of risk factors of PWD and an update of colistin use in PWD control worldwide in terms of quantities and microbiological outcomes. Subsequently, alternative strategies to the use of colistin for the control of this disease are described and discussed. Finally, a practical approach for the control of PWD in its various phases is proposed
    corecore