168 research outputs found

    The Role of Phosphatases in Nuclear Envelope Disassembly and Reassembly and Their Relevance to Pathologies

    Get PDF
    The role of kinases in the regulation of cell cycle transitions is very well established, however, over the past decade, studies have identified the ever-growing importance of phosphatases in these processes. It is well-known that an intact or otherwise non-deformed nuclear envelope (NE) is essential for maintaining healthy cells and any deviation from this can result in pathological conditions. This review aims at assessing the current understanding of how phosphatases contribute to the remodelling of the nuclear envelope during its disassembling and reformation after cell division and how errors in this process may lead to the development of diseases.The Wellcome Trus

    Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα

    Get PDF
    © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology

    Network of phosphatases and HDAC complexes at repressed chromatin

    Get PDF
    Tight regulation of gene expression is achieved by a variety of protein complexes that selectively bind chromatin, modify it and change its transcription competency. Histone acetylases (HATs) and deacetylases (HDACs) play an important role in this process. They can generate transcriptionally active or inactive chromatin through the addition (HATs) or removal (HDACs) of acetyl groups on histones, respectively. Repo-Man is a Protein Phosphatase 1 targeting subunit that accumulates on chromosomes during mitotic exit and mediates the removal of mitotic histone H3 phosphorylations. It was shown recently that Repo-Man also regulates heterochromatin formation in interphase and that its depletion favours the switch between transcriptionally inactive and active chromatin, demonstrating that its role goes well beyond mitosis. Here, we provide the first link between a phosphatase and HDAC complexes. We show that genome-wide Repo-Man binding sites overlap with chromatin regions bound by members of the three HDAC complexes (Sin3a, NuRD and CoREST). We establish that members of the NuRD and Sin3a HDAC complexes interact with Repo-Man by mass spectrometry and that Repo-Man is in close proximity to SAP18 (Sin3a) in interphase as observed by the Proximity Ligation Assay. Altogether, these data suggest a mechanism by which Repo-Man/PP1 complex, via interactions with HDACs, could stabilise gene repression.BBSRC gran

    Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

    Get PDF
    Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size

    Bovine Lactoferrin Prevents Invasive Fungal Infections in Very Low Birth Weight Infants: A Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Lactoferrin is a mammalian milk glycoprotein involved in innate immunity. Recent data show that bovine lactoferrin (bLF) prevents late-onset sepsis in preterm very low birth weight (VLBW) neonates. METHODS: This is a secondary analysis of data from a multicenter randomized controlled trial where preterm VLBW neonates randomly received bLF (100 mg/day; group A1), bLF + Lactobacillus rhamnosus GG (10(6) colony-forming units per day; group A2), or placebo (group B) for 6 weeks. Here we analyze the incidence rates of fungal colonization, invasive fungal infection (IFI), and rate of progression from colonization to infection in all groups. RESULTS: This study included 472 neonates whose clinical, nutritional, and demographical characteristics were similar. Overall, the incidence of fungal colonization was comparable (17.6%, 16.6%, and 18.5% in A1, A2, and B, respectively; P = .89 [A1] and .77 [A2]). In contrast, IFIs were significantly decreased in A1 and A2 (0.7% and 2.0%, respectively) compared with B (7.7%; P = .002 [A1] and .02 [A2]), and this was significantly true both in <1000 g (0.9% [A1] and 5.6% [A2], vs 15.0%) and in 1001 to 1500 g infants (0% and 0% vs 3.7%). The progression rate colonization-infection was significantly lower in the bLF groups: 3.7% (A1) and 12% (A2), vs 41.9%; P < .001 (A1) and P = .02 (A2). No IFI-attributable deaths occurred in the treatment groups, versus 2 in placebo. No adverse effects or intolerances occurred. CONCLUSIONS: Prophylactic oral administration of bLF reduces the incidence of IFI in preterm VLBW neonates. No effect is seen on colonization. The protective effect on IFI is likely due to limitation of ability of fungal colonies to progress toward invasion and systemic disease in colonized infants

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    A survey of Italian and Spanish neonatologists and paediatricians regarding awareness of the diagnosis of FAS and FASD and maternal ethanol use during pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethanol is the most widely used drug in the world and a human teratogen whose consumption among women of childbearing age has been steadily increasing. There are no Italian or Spanish statistics on ethanol consumption during pregnancy nor any information regarding prevalence of fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). There is also a reasonable suspicion that these two diseases are underdiagnosed by professionals from the above-reported countries. The objectives of this study were: 1) to evaluate the experience, knowledge and confidence of Italian and Spanish neonatologists and paediatricians with respect to the diagnosis of FAS and FASD, and 2) to evaluate professionals awareness of maternal drinking patterns during pregnancy.</p> <p>Methods</p> <p>A multiple-choice anonymous questionnaire was e-mailed to Italian neonatologists registered in the mailing list of the corresponding Society and administered to Italian and Spanish paediatricians during their National Congress.</p> <p>Results</p> <p>The response rate was 16% (63/400) for the Italian neonatologists of the National Society while a total of 152 Spanish and 41 Italian paediatricians agreed to complete the questionnaire during National Congress. Over 90% of the surveyed physicians declared that FAS is an identifiable syndrome and over 60% of them identified at least one of the most important features of FAS. Although over 60% Italian responders and around 80% Spanish responders were aware that ethanol use in pregnancy is dangerous, approximately 50% Italian responders and 40% Spanish ones allowed women to drink sometimes a glass of wine or beer during pregnancy.</p> <p>Neonatologists and paediatricians rated confidence in the ability to diagnosis FAS and FASD as low, with over 50% responders feeling they needed more information regarding FAS and FASD identification in newborn and child.</p> <p>Conclusions</p> <p>Italian and Spanish neonatologists and paediatricians do not feel confident about diagnosing FAS and FASD. More training is needed in order to accurately diagnose ethanol use during pregnancy and correctly inform pregnant women on the consequences on the newborn.</p

    Cohesin Is Dispensable for Centromere Cohesion in Human Cells

    Get PDF
    BACKGROUND: Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS: We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS: These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation
    • …
    corecore