109 research outputs found

    Ecological theory as a foundation to control pathogenic invasion in aquaculture

    Get PDF
    Detrimental host-pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on 'join them' and not the traditional 'beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture

    Responses of biological and chemical components in North East Atlantic coastal water to experimental nitrogen and phosphorus addition – A full scale ecosystem study and its relevance for management

    Get PDF
    Highlights: • A full-scale 5 year experimental study of ecosystem responses to increased nutrients. • Concentrations of DIN and DIP did not respond positively to increased nutrient input. • Concentrations of PON and POP and phytoplankton biomass responded positively. • PON is suggested as credible indicator for chemical and ecological state. • A general scientific concept for managing nutrient input to coastal waters is presented. Abstract: The objective of this study was to quantify chemical and biological responses to an experimentally increased nutrient input to an open coastal planktonic ecosystem and to contribute to a scientific concept and credible indicators for managing nutrient supply to coastal waters. Data were derived in a 5 year fertilisation experiment of a tidal driven coastal lagoon at the outer coast off Central Norway (63°36’ N, 9°33’ E), with a surface area of 275.000 m2, volume of 5.5 mill m3, mean depth of 22 m and a water exchange rate of 0.19 day- 1. The lagoon was fertilised in the summer season 1998 and 1999, while summer seasons 1996-97 and 2000 and inflowing water were used as unfertilised references. Most measured chemical and biological variables showed linear responses with an increasing loading rate of inorganic N and P (LN and LP, respectively). PON, POP and POC ( 0.05) as did heterotrophic biomass (P > 0.05). We evaluate the response variables assuming a stepwise incorporation process of nutrients in the planktonic ecosystem and how that will interact with biological response times and water dilution rates. We suggest that PON is a credible indicator of both chemical and ecological states of the planktonic ecosystem and that natural background and upper critical concentrations are 46 and 88 mg PON m- 3, respectively. The study was supported by data from mesocosms. We discuss the scientific relevance of our suggestions, how results can be extrapolated to a broader geographical scale, and we propose a science-based concept for the management of nutrient emission to open coastal waters

    Mechanisms Generating Dichotomies in the Life Strategies of Heterotrophic Marine Prokaryotes

    Get PDF
    Understanding the mechanisms that generate and maintain diversity in marine prokaryotic communities is one of the main challenges for contemporary marine microbiology. We here review how observational, experimental, and theoretical evidence converge on the conclusion that the marine pelagic community of heterotrophic prokaryotes consists of organisms with two main types of life strategies. We illustrate this dichotomy by SAR11 and Vibrio spp. as typical representatives of the two strategies. A theory for life strategy dichotomy exists in classical r/K-selection. We here discuss an additional dichotomy introduced by what we term S/L-selection (for Small and Large, respectively). While r/K-selection focuses on the role of environmental disturbances, steady-state models suggest that high abundance at species level should be closely related to a low trade-off between competition and defense. We summarize literature indicating that the high availability of organic C is an essential environmental factor favoring Vibrio spp. and suggest that the essence of the generalized L-strategy is to reduce the competition-predator defense trade-off by using non-limiting organic C to increase size. The “streamlining” theory that has been suggested for the S-strategist SAR11 proposes the opposite: that low trade-off is achieved by a reduction in size. We show how this apparent contradiction disappears when the basic assumptions of diffusion-limited uptake are considered. We propose a classification scheme that combines S/L and r/K-selection using the two dimensions of organic C availability and environmental disturbance. As organic C in terrestrial runoff and size of the oligotrophic oceanic gyres are both changing, habitat size for both S- and L-strategists are affected by global change. A theory capturing the main aspects of prokaryote life strategies is therefore crucial for predicting responses of the marine microbial food web to climate change and other anthropogenic influences.publishedVersio

    Monitoring abrupt changes in bacteria within biological stable RAS water

    Get PDF

    Gut microbiota of migrating wild rabbit fish (Siganus guttatus) larvae have low spatial and temporal variability

    No full text
    We investigated the gut microbiota of rabbit fish larvae at three locations in Vietnam (ThuanAn-northern, QuangNam-intermediate, BinhDinh-southern sampling site) over a three-year period. In the wild, the first food for rabbit fish larvae remains unknown, while the juveniles and adults are herbivores, forming schools near the coasts, lagoons, and river mouths, and feeding mainly on filamentous algae. This is the first study on the gut microbiota of the wild fish larvae and with a large number of individuals analyzed spatially and temporally. The Clostridiales order was the most predominant in the gut, and location-by-location alpha diversity showed significant differences in Chao-1, Hill number 1, and evenness. Analysis of beta diversity indicated that the location, not year, had an effect on the composition of the microbiota. In 2014, the gut microbiota of fish from QuangNam was different from that in BinhDinh; in 2015, the gut microbiota was different for all locations; and, in 2016, the gut microbiota in ThuanAn was different from that in the other locations. There was a time-dependent trend in the north-south axis for the gut microbiota, which is considered to be tentative awaiting larger datasets. We found limited variation in the gut microbiota geographically and in time and strong indications for a core microbiome. Five and fifteen OTUs were found in 100 and 99% of the individuals, respectively. This suggests that at this life stage the gut microbiota is under strong selection due to a combination of fish-microbe and microbe-microbe interactions

    Lipid and DHA-production in Aurantiochytrium sp. – Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes

    Get PDF
    Thraustochytrids of the genera Schizochytrium and Aurantiochytrium accumulate oils rich in the essential, marine n3 fatty acid docosahexaenoic acid (DHA). DHA production in Aurantiochytrium sp T66 was studied with the aim to provide more knowledge about factors that affect the DHA-productivities and the contributions of the two enzyme systems used for fatty acid synthesis in thraustochytrids, fatty acid synthetase (FAS) and PUFA-synthase. Fermentations with nitrogen starvation, which is well-known to initiate lipid accumulation in oleaginous organisms, were compared to fermentations with nitrogen in excess, obtained by oxygen limitation. The specific productivities of fatty acids originating from FAS were considerably higher under nitrogen starvation than with nitrogen in excess, while the specific productivities of DHA were the same at both conditions. Global transcriptome analysis showed significant up-regulation of FAS under N-deficient conditions, while the PUFA-synthase genes were only marginally upregulated. Neither of them was upregulated under O2-limitation where nitrogen was in excess, suggesting that N-starvation mainly affects the FAS and may be less important for the PUFA-synthase. The transcriptome analysis also revealed responses likely to be related to the generation of reducing power (NADPH) for fatty acid synthesis.publishedVersio

    Montana Kaimin, August 28, 2008

    Get PDF
    Student newspaper of the University of Montana, Missoula.https://scholarworks.umt.edu/studentnewspaper/6186/thumbnail.jp

    Influence of Nitrogen Limitation on Lipid Accumulation and EPA and DHA Content in Four Marine Microalgae for Possible Use in Aquafeed

    Get PDF
    Microalgae are regarded as a promising alternative that can replace fishmeal and fish oil in aquaculture. Under N-limitation, many microalgae species change their carbon storage patterns in favor of neutral lipids (NLs) mainly in the form of triacylglycerol (TAG), but fatty acids in polar lipids (PL) are nutritionally more available for fish than those esterified into NLs. In the present study, the effect of N-limitation on the lipid content and fatty acid profiles in different lipid classes of Phaeodactylum tricornutum, Isochrysis aff. galbana clone T-Iso, Rhodomonas baltica, and Nannochloropsis oceanica were investigated. The microalgae cells were cultivated by two different methods, batch and semi-continuous culture, to create strong and moderate N-limitation, and this in turn will significantly affect the biomass and lipid productivity. All four species accumulated lipids mainly in the form of TAG, in response to strong nitrogen limitation. N. oceanica, however, accumulated 51% of the dry weight as lipid in moderate nitrogen limitation and up to 87% of the fatty acid was in TAG. Isochrysis aff. galbana clone T-Iso was the only species where the fraction of polyunsaturated fatty acid (PUFA), especially the fraction of docosahexaenoic acid (DHA), increased with increasing nitrogen limitation. Total lipid productivity showed no increase in batch culture although stronger nitrogen limitation led to lipid accumulation. P. tricornutum had the highest eicosapentaenoic acid (EPA) content, while N. oceanica showed the highest EPA productivity due to the high content of lipid. The highest DHA productivity was found in Isochrysis aff. galbana clone T-Iso from moderate N-limitation, mainly due to the high biomass productivity. Based on the results from the current study, N. oceanica and T-Iso are two promising microalgae strains ass long-term sustainable sources of n-3 long chain -PUFAs under moderate N-limitation. As shown in the present study, increased lipid content in microalgal cells due to strong N-limitation induction may not increase the lipid productivity because biomass production is usually reduced. Therefore, a combination of approaches such as metabolic engineering, conditioning and selection may be needed to further increase the n-3 LC-PUFA productivity without substantial loss of biomass

    Managing the microbial community of marine fish larvae: a holistic perspective for larviculture

    Get PDF
    The availability of high-quality juveniles is a bottleneck in the farming of many marine fish species. Detrimental larvae-microbe interactions are a main reason for poor viability and quality in larval rearing. In this review, we explore the microbial community of fish larvae from an ecological and eco-physiological perspective, with the aim to develop the knowledge basis for microbial management. The larvae are exposed to a huge number of microbes from external and internal sources in intensive aquaculture, but their relative importance depend on the rearing technology used (especially flow-through vs. recirculating systems) and the retention time of the water in the fish tanks. Generally, focus has been on microbes entering the system, but microbes from growth within the system is normally a substantial part of the microbes encountered by larvae. Culture independent methods have revealed an unexpected high richness of bacterial species associated with larvae, with 100–250 operational taxonomic units associated with one individual. The microbiota of larvae changes rapidly until metamorphosis, most likely due to changes in the selection pressure in the digestive tract caused by changes in host-microbe and microbe-microbe interactions. Even though the microbiota of larvae is distinctly different from the microbiota of the water and the live food, the microbiota of the water strongly affects the microbiota of the larvae. We are in the early phase of understanding larvae-microbe interactions in vivo, but some studies with other animals than fish emphasize that we so far have underestimated the complexity of these interactions. We present examples demonstrating the diversity of these interactions. A large variety of microbial management methods exist, focusing on non-selective reduction of microbes, selective enhancement of microbes, and on improvement of the resistance of larvae against microbes. However, relatively few methods have been studied extensively. We believe that there is a lot to gain by increasing the diversity of approaches for microbial management. As many microbial management methods are perturbations of the microbial community, we argue that ecological theory is needed to foresee and test for longer term consequences in microbe-microbe and microbe-larvae interactions. We finally make some recommendations for future research and development
    • …
    corecore