18 research outputs found

    Increasing importance of anthelmintic resistance in European livestock: creation and meta-analysis of an open database

    Get PDF
    peer reviewedHelminth infections are ubiquitous in grazing ruminant production systems, and are responsible for significant costs and production losses. Anthelmintic Resistance (AR) in parasites is now widespread throughout Europe, although there are still gaps in our knowledge in some regions and countries. AR is a major threat to the sustainability of modern ruminant livestock production, resulting in reduced productivity, compromised animal health and welfare, and increased greenhouse gas emissions through increased parasitism and farm inputs. A better understanding of the extent of AR in Europe is needed to develop and advocate more sustainable parasite control approaches. A database of European published and unpublished AR research on gastrointestinal nematodes (GIN) and liver fluke (Fasciola hepatica) was collated by members of the European COST Action “COMBAR” (Combatting Anthelmintic Resistance in Ruminants), and combined with data from a previous systematic review of AR in GIN. A total of 197 publications on AR in GIN were available for analysis, representing 535 studies in 22 countries and spanning the period 1980–2020. Reports of AR were present throughout the European continent and some reports indicated high within-country prevalence. Heuristic sample size-weighted estimates of European AR prevalence over the whole study period, stratified by anthelmintic class, varied between 0 and 48%. Estimated regional (country) prevalence was highly heterogeneous, ranging between 0% and 100% depending on livestock sector and anthelmintic class, and generally increased with increasing research effort in a country. In the few countries with adequate longitudinal data, there was a tendency towards increasing AR over time for all anthelmintic classes in GIN: aggregated results in sheep and goats since 2010 reveal an average prevalence of resistance to benzimidazoles (BZ) of 86%, macrocyclic lactones except moxidectin (ML) 52%, levamisole (LEV) 48%, and moxidectin (MOX) 21%. All major GIN genera survived treatment in various studies. In cattle, prevalence of AR varied between anthelmintic classes from 0–100% (BZ and ML), 0–17% (LEV) and 0–73% (MOX), and both Cooperia and Ostertagia survived treatment. Suspected AR in F. hepatica was reported in 21 studies spanning 6 countries. For GIN and particularly F. hepatica, there was a bias towards preferential sampling of individual farms with suspected AR, and research effort was biased towards Western Europe and particularly the United Kingdom. Ongoing capture of future results in the live database, efforts to avoid bias in farm recruitment, more accurate tests for AR, and stronger appreciation of the importance of AR among the agricultural industry and policy makers, will support more sophisticated analyses of factors contributing to AR and effective strategies to slow its spread

    A revised checklist of Cooperia nematodes (Trichostrogyloidea), common parasites of wild and domestic ruminants

    No full text
    This review updates the current knowledge on the taxonomy of intestinal nematodes of the genus Cooperia parasitizing in wild and domestic ruminants. The emphasis is put on revision of 19 valid species belonging to the genus. This analysis focuses on main features of the genus Cooperia, including its geographic occurrence and the life cycle details. The most widespread congeners are Cooperia curticei, C. oncophora, C. pectinata, and C. punctata, having nearly worldwide distribution. The fifth species, referred by electronic databases from the European territory as Cooperia asamatiSpiridonov, 1985, is unveiled here originally as nomen nudum

    Heavy metal accumulation in small terrestrial rodents infected by cestodes or nematodes

    No full text
    The aim of the present study was to assess whether there is a difference in accumulation of heavy metal ions (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in hosts (small mammals) infected by cestode parasites when compared to those without cestode infection. The abundance of gastrointestinal parasites and bioaccumulation of heavy metals in host livers and kidneys were measured. Contents of heavy metals in hosts were determined by ICP OES method. The hosts with cestode infection (Paranoplocephala sp.) had lower contents of heavy metals in their livers and kidneys compared to hosts with nematode infection (Mastophorus muris). The content of Pb, Cd, Cr, Cu and Ni was higher in kidneys than in livers, in both (cestode and nematode infected) rodents while the content of Mn was higher in livers. Content of Zn was similar. The content of heavy metals in host was decreasing with the increasing abundance of cestodes (Paranoplocephala sp.). Species-response models to particular heavy metals are presented

    Heavy metal accumulation in small terrestrial rodents infected by cestodes or nematodes

    No full text
    The aim of the present study was to assess whether there is a difference in accumulation of heavy metal ions (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in hosts (small mammals) infected by cestode parasites when compared to those without cestode infection. The abundance of gastrointestinal parasites and bioaccumulation of heavy metals in host livers and kidneys were measured. Contents of heavy metals in hosts were determined by ICP OES method. The hosts with cestode infection (Paranoplocephala sp.) had lower contents of heavy metals in their livers and kidneys compared to hosts with nematode infection (Mastophorus muris). The content of Pb, Cd, Cr, Cu and Ni was higher in kidneys than in livers, in both (cestode and nematode infected) rodents while the content of Mn was higher in livers. Content of Zn was similar. The content of heavy metals in host was decreasing with the increasing abundance of cestodes (Paranoplocephala sp.). Species-response models to particular heavy metals are presented

    Heavy metal accumulation in small terrestrial rodents infected by cestodes or nematodes

    No full text
    The aim of the present study was to assess whether there is a difference in accumulation of heavy metal ions (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in hosts (small mammals) infected by cestode parasites when compared to those without cestode infection. The abundance of gastrointestinal parasites and bioaccumulation of heavy metals in host livers and kidneys were measured. Contents of heavy metals in hosts were determined by ICP OES method. The hosts with cestode infection (Paranoplocephala sp.) had lower contents of heavy metals in their livers and kidneys compared to hosts with nematode infection (Mastophorus muris). The content of Pb, Cd, Cr, Cu and Ni was higher in kidneys than in livers, in both (cestode and nematode infected) rodents while the content of Mn was higher in livers. Content of Zn was similar. The content of heavy metals in host was decreasing with the increasing abundance of cestodes (Paranoplocephala sp.). Species-response models to particular heavy metals are presented
    corecore