16 research outputs found
Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems
1. Precipitation regimes are changing in response to climate change, yet understanding of how forest ecosystems respond to extreme droughts and pluvials remains incomplete. As future precipitation extremes will likely fall outside the range of historical variability, precipitation manipulation experiments (PMEs) are critical to advancing knowledge about potential ecosystem responses. However, few PMEs have been conducted in forests compared to shortâstatured ecosystems, and forest PMEs have unique design requirements and constraints. Moreover, past forest PMEs have lacked coordination, limiting crossâsite comparisons. Here, we review and synthesize approaches, challenges, and opportunities for conducting PMEs in forests, with the goal of guiding design decisions, while maximizing the potential for coordination.
2. We reviewed 63 forest PMEs at 70 sites worldâwide. Workshops, meetings, and communications with experimentalists were used to generate and build consensus around approaches for addressing the key challenges and enhancing coordination.
3. Past forest PMEs employed a variety of study designs related to treatment level, replication, plot and infrastructure characteristics, and measurement approaches. Important considerations for establishing new forest PMEs include: selecting appropriate treatment levels to reach ecological thresholds; balancing cost, logistical complexity, and effectiveness in infrastructure design; and preventing unintended water subsidies. Response variables in forest PMEs were organized into three broad tiers reflecting increasing complexity and resource intensiveness, with the first tier representing a recommended core set of common measurements.
4. Differences in site conditions combined with unique research questions of experimentalists necessitate careful adaptation of guidelines for forest PMEs to balance local objectives with coordination among experiments. We advocate adoption of a common framework for coordinating forest PME design to enhance crossâsite comparability and advance fundamental knowledge about the response and sensitivity of diverse forest ecosystems to precipitation extremes.New Hampshire Agricultural Experiment Station, Grant/Award Number: NH00071-M; Northern States Research Cooperative, Grant/Award Number: 14-DG-11242307- 142; National Science Foundation Long-Term Ecological Research, Grant/Award Number: 1637685; USDA Forest Service; University of New Hampshire; NASA, Grant/Award Number: NNX14AD31G; USDA National Institute of Food and Agriculture McIntire- Stennis Project, Grant/Award Number: NH00071-M; U.S. Department of Energy; Office of Scienceâs Terrestrial Ecosystem Science program; Pacific Northwest National Labsâ LDRD program; MSCA-IF 2015; EU-Horizon2020 program; NSFâs Research Coordination Network Progra
Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA
Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2 on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (delta C-13) and oxygen (delta O-18) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) of Quercus velutina Lamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low-and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar % N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increased Q. velutina sensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2 has improved iWUE, with N fertilization and CO2 having synergistic effects on iWUE
Elemental and isotopic perspectives on the impact of arbuscular mycorrhizal and ectomycorrhizal fungi on mineral weathering across imposed geologic gradients
International audienc
Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils
The conversion of natural forests to tree plantations alters the quality and decreases the quantity of litter inputs into the soil, but how the alteration of litter inputs affect soil organic matter (SOM) decomposition remain unclear. We examined SOM decomposition by adding 13C-labeled leaf-litter of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) to soils from a natural evergreen broad-leaved forest and an adjacent Chinese fir plantation converted from a natural evergreen broad-leaved forest 42 years ago. Over 195 days, we monitored CO2 efflux and its Ύ13C, microbial biomass, and the composition of microbial groups by phospholipid fatty acids (PLFAs). To distinguish priming mechanisms, partitioning of C sources in CO2 and microbial biomass was determined based on Ύ13C. Leaf-litter addition to natural forest increased microbial biomass and induced up to 14% faster SOM decomposition (positive priming) than that in soil without litter. In contrast, negative priming in soils under plantation indicated preferential use of added leaf-litter rather than recalcitrant SOM. This preferential use of leaf-litter was supported by an increased fungal to bacterial ratio and litter-derived (13C) microbial biomass, reflecting increased substrate recalcitrance, the respective changes in microbial substrate utilization and increased C use efficiency. The magnitude and direction of priming effects depend on microbial preferential utilization of new litter or SOM. Concluding, the impact of coniferous leaf-litter inputs on the SOM priming is divergent in natural evergreen broad-leaved forests and plantations, an important consideration in understanding long-term C dynamics and cycling in natural and plantation forest ecosystems. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature
Correction to: Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils (Biology and Fertility of Soils, (2018), 54, 8, (925-934), 10.1007/s00374-018-1314-5)
The author regret that a typographical error was present in the Fig. 2 of the published original version of this article; the text âNatualâ in the image should have been âNaturalâ. The correct Fig. 2 is now presented correctly in this article. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature