4,279 research outputs found
Virtual Elements for the Navier-Stokes problem on polygonal meshes
A family of Virtual Element Methods for the 2D Navier-Stokes equations is
proposed and analysed. The schemes provide a discrete velocity field which is
point-wise divergence-free. A rigorous error analysis is developed, showing
that the methods are stable and optimally convergent. Several numerical tests
are presented, confirming the theoretical predictions. A comparison with some
mixed finite elements is also performed
The Schizophrenic Spectrum of LSR 1610-0040: a Peculiar M Dwarf/Subdwarf
We present a moderate resolution (R=2000), 0.8-4.1 micron spectrum of LSR
1610-0040, a high proper motion star classified as an early-type L subdwarf by
Lepine and collaborators based on its red-optical spectrum. The near-infrared
spectrum of LSR 1610-0040 does not fit into the (tentative) M/L subdwarf
sequence but rather exhibits a mix of characteristics found in the spectra of
both M dwarfs and M subdwarfs. In particular, the near-infrared spectrum
exhibits a Na I doublet and CO overtone bandheads in the K band, and Al I and K
I lines and an FeH bandhead in the H band, all of which have strengths more
typical of field M dwarfs. Furthermore the spectrum of Gl 406 (M6 V) provides a
reasonably good match to the 0.6-4.1 micron spectral energy distribution of LSR
1610. Nevertheless the near-infrared spectrum of LSR 1610 also exhibits
features common to the spectra of M subdwarfs including a strong Ti I multiplet
centered at ~0.97 microns, a weak VO band at ~1.06 microns, and possible
collision-induced H_2 absorption in the H and K bands. We discuss a number of
possible explanations for the appearance of the red-optical and near-infrared
spectrum of LSR 1610-0040. Although we are unable to definitively classify LSR
1610-0040, the preponderance of evidence suggests that it is a mildly
metal-poor M dwarf. Finally, we tentatively identify a new band of TiO at ~0.93
microns in the spectra of M dwarfs.Comment: Accepted for publication in the Astronomical Journa
Untangling cosmic magnetic fields: Faraday tomography at metre wavelengths with LOFAR
14 pages, 6 figures. Accepted for publication in "The Power of Faraday Tomography" special issue of GalaxiesThe technique of Faraday tomography is a key tool for the study ofmagnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisationmakes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (~64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 × 10 26 W Hz -1 (with ~13% of all sources having a linear size > 1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ~20'. One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.Peer reviewe
Near-Infrared Spectroscopy of McNeil's Nebula Object
We present 0.8-5.2 micron spectroscopy of the compact source at the base of a
variable nebula (McNeil's Nebula Object) in the Lynds 1630 dark cloud that went
into outburst in late 2003. The spectrum of this object reveals an extremely
red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice
absorption feature, and a solid state CO absorption feature at 4.7 microns. In
addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen
lines exhibit P Cygni profiles, as do two lines of He I, although the emission
features are very weak in the latter. The Brackett lines, however, are seen to
be purely in emission. The P Cygni profiles clearly indicate that mass outflow
is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not
yield consistent estimates of the reddening, nor do they agree with the
extinction estimated from the ice feature (A_V ~ 11). We propose that these
lines are optically thick and are produced in a dense, ionized wind. The
near-infrared spectrum does not appear similar to any known FUor or EXor
object. However, all evidence suggests that McNeil's Nebula Object is a
heavily-embedded low-mass Class I protostar, surrounded by a disk, whose
brightening is due to a recent accretion event.Comment: 11 pages, 2 ps figures, accepted for publication in ApJ Letter
FeH Absorption in the Near-Infrared Spectra of Late M and L Dwarfs
We present medium-resolution z-, J-, and H-band spectra of four late-type
dwarfs with spectral types ranging from M8 to L7.5. In an attempt to determine
the origin of numerous weak absorption features throughout their near-infrared
spectra, and motivated by the recent tentative identification of the E 4\Pi- A
^4\Pi system of FeH near 1.6 microns in umbral and cool star spectra, we have
compared the dwarf spectra to a laboratory FeH emission spectrum. We have
identified nearly 100 FeH absorption features in the z-, J-, and H-band spectra
of the dwarfs. In particular, we have identified 34 features which dominate the
appearance of the H-band spectra of the dwarfs and which appear in the
laboratory FeH spectrum. Finally, all of the features are either weaker or
absent in the spectrum of the L7.5 dwarf which is consistent with the weakening
of the known FeH bandheads in the spectra of the latest L dwarfs.Comment: accepted by Ap
SOFIA/EXES Observations of Water Absorption in the Protostar AFGL 2591 At High Spectral Resolution
We present high spectral resolution (similar to 3 km s(-1)) observations of the nu(2) ro-vibrational band of H2O in the 6.086-6.135 mu m range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu(2) band of H2O, two by transitions in the first vibrationally excited nu(2) band of H2O, and one by a transition in the nu(2) band of (H2O)-O-18. Among the detected transitions is the nu(2) 1(1,1)-0(0,0) line that probes the lowest-lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas or that the absorption arises within the 6 mu m emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed absorption lines are N(H2O) = (1.3 +/- 0.3) x 10(19) cm(-2) and T = 640 +/- 80 K.UCD NNX13AI85ANASA Ames NNX13AI85AAstronom
Applicability of Kinematic and Diffusive models for mud-flows: a steady state analysis
The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a
power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water
flows, the study compares the steady flow depth profiles predicted by approximated models with those
of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical
solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the
approximated models is assessed by computing the average, along the channel length, of the errors, for
several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error
equal to 5%, the applicability conditions of the two approximations have been individuated for several
values of the power-law exponent, showing a crucial role of the rheology. The comparison with the
clear-water results indicates that applicability criteria for clear-water flows do not apply to shearthinning
fluids, potentially leading to an incorrect use of approximated models if the rheology is not
properly accounted for
- …
