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a b s t r a c t

The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a
power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water
flows, the study compares the steady flow depth profiles predicted by approximated models with those
of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical
solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the
approximated models is assessed by computing the average, along the channel length, of the errors, for
several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error
equal to 5%, the applicability conditions of the two approximations have been individuated for several
values of the power-law exponent, showing a crucial role of the rheology. The comparison with the
clear-water results indicates that applicability criteria for clear-water flows do not apply to shear-
thinning fluids, potentially leading to an incorrect use of approximated models if the rheology is not
properly accounted for.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

In the geophysical context, a large number of flows, e.g. debris
and/or mud flows, submarine or snow avalanches, is characterized
by water transporting huge quantities of solids. These flows are
often studied with the methods of fluid mechanics, combining
appropriate flow schematizations with suitable rheological
descriptions. A widespread approach considers a non-Newtonian
rheology under purely viscous regime and a depth-integrated
approximation.

For fluids with negligible yield stress, the power-law represents
an effective rheological model for the description of the shear-
thinning fine sediment-water mixtures which are often encoun-
tered in natural estuaries (e.g. Zhang et al. 2010) or in landsides
(e.g. Carotenuto et al. 2015). Coupling the power-law rheology
with the Von Karman approximation for the momentum conserva-
tion equation leads to the well-known shallow-layer model of Ng
and Mei (1994). In several applications, some of the terms of the
momentum conservation equation - i.e. inertia, pressure gradient,
gravity and bottom shear stress – may be smaller than the others.
In these circumstances, similarly to what is commonly exploited in
open-channel flows in the context of flood routing, the flow model
can be further simplified. For instance, neglecting the inertia terms
leads to the so-called Diffusive Wave model, whereas the further
disregarding of the pressure gradient term results in the Kinematic
Wave approximation.

Even if efficient numerical methods for the solution of the com-
plete momentum equations are currently available, the approxi-
mate models are still useful in the field of flood routing. In fact,
in addition to the inherent benefit of reducing the computational
effort, approximated wave models offer several further advantages.
For instance, simplified models may be more easily coupled with
high-resolution topographic data, and the boundary conditions
more straightforwardly accounted for than in the full one (Aricò
et al. 2011). Moreover, several studies showed a smaller sensitivity
of simplified models to the errors in the topographic description
with respect to the full one, demonstrating their accuracy and
robustness to data uncertainty (Yu and Lane 2006; Weill et al.
2014; Aricò et al. 2016).

Most of these advantages do not depend on the flowing med-
ium, so it does not surprise that simplified models have been
widely used also with non-Newtonian fluids, to reproduce either
the results of laboratory experiments (Huang and Garcia 1998;
Balmforth et al. 2007; Ancey and Cochard 2009; Pudasaini, 2001;
Ancey et al. 2012) or mud/debris flows occurred in the field.
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O’Brien et al. (1993) developed the FLO-2D code for mud/debris
flow simulations, including both Diffusive and Kinematic approxi-
mations. Arattano and Savage (1994) simulated the two debris
flows occurred in 1981 on Mount St. Helens, Washington, U.S.A.
with a model based on Kinematic approximation, obtaining a good
agreement with the field data. Arattano et al. (2006), in simulating
the debris flow occurred in 2004 in an experimental basin on the
Italian Alps, showed that the Kinematic approximation, based on
the rheological model by Honda and Egashira (1997), was able to
fairly reproduce the recorded hydrographs. Arattano and Franzi
(2010) analyzed the applicability of both Diffusive and Kinematic
Wave models for reproducing debris flow occurred in an Italian
instrumented torrent, evaluating in a real-case scenario the actual
magnitude of the neglected terms. Chiang et al. (2012) studied
landslides and debris flows caused by Morakot typhoon in Taiwan
on August 2009, by means of a cell model with a Kinematic approx-
imation of the flow model, achieving a predictive capability of the
affected area and of the deposition volume. Rengers et al. (2016)
investigated post-wildfire debris flows adopting the kinematic
approximation. It has been shown that the Kinematic Wave model
represents a suitable approach for predicting flood and debris
flows timing in steep, burned watersheds. Gregoretti et al. (2016)
applied an approach similar to Chiang et al. (2012) for the simula-
tion of the debris flow on the Rio Lazer (Dolomites, North-Eastern
Italian Alps), obtaining a good agreement between computed and
observed results in terms of debris-flow deposition area and
changes in valley morphology.

The promising results achieved in the above applications open a
wider question on a more general definition of the applicability
range of simplified models. This aspect has been widely studied
in the literature for clear-water open-channel flows in turbulent
regime, and three approaches to assess the applicability of approx-
imated models have been followed. The first technique consists in
analysing the linearized version of both the complete and the
approximated models and comparing the properties of the result-
ing unsteady solutions as a function of the dimensionless wave
period (Ponce et al. 1978; Menendez and Norscini, 1982; Dooge
et al. 1987; Lamberti and Pilati 1996; Singh 1996; Tsai 2003).
The other two methods account for the non-linearity of the flow
model. Indeed, the second approach is essentially based on the
estimation of the magnitude of the terms neglected in the momen-
tum equation (Woolhiser and Liggett 1967; Morris and Woolhiser
1980; Fread 1983; Ferrick 1985; Moussa and Boequillon, 1996;
Moramarco and Singh 2000; Perumal and Sahoo 2007). Finally,
the third approach relies on the solution of the full and the approx-
imated models and on the analysis of the differences among the
results. Either steady (Govindaraju et al. 1988a,b; Parlange et al.
1990; Singh and Aravamuthan 1995a,b, 1996; Moramarco et al.
2008a) or unsteady (Moramarco et al. 2008b) flow conditions have
been investigated and an estimation of the spatial (resp. temporal)
error resulting from to the application of the approximated models
has been provided. Some of these criteria have been validated
through the comparison with the dynamics of recorded flood
events (Moramarco et al. 2008b).

As far as non-Newtonian fluids are concerned, Di Cristo et al.
(2014a,b) followed the first of the above approaches in order to
define applicability criteria for some approximate models for
mud floods, considering a Herschel & Bulkley and a power-law rhe-
ology, respectively. In an unbounded channel, a linearized version
of the flow model, valid in the neighbourhood of uniform condi-
tion, has been considered. The expressions of celerity and attenua-
tion factor of the primary wave for the full and some simplified (i.e.
kinematic, diffusion and quasi-steady) models have been com-
pared. Considering an accuracy threshold of 95%, applicability cri-
teria have been deduced in terms of the dimensionless wave period
of the flow perturbation, which can be related the dimensionless
rising time of the flood hydrograph. Di Cristo et al. (2017)
addressed the same problem of Di Cristo et al. (2014b) but for
finite-length channels. The analysis, based on the evaluation of
three shape factors of the linearized upstream channel response
function, has shown that the diffusive approximation provides
the best performance, especially for low values of the Froude num-
ber. Despite they natively account for the power-law rheology,
both Di Cristo et al. (2014b) and Di Cristo et al. (2017) studies deal
with linearized flow models.

The present paper investigates the applicability of Kinematic
and Diffusive Wave models in presence of power-law fluids, fully
accounting for the non-linearity of governing equations. Steady
state conditions are considered, extending to the shear-thinning
power-law rheology the analyses previously performed for turbu-
lent clear-water flows (Govindaraju et al. 1988a,b; Parlange et al.
1990; Singh and Aravamuthan 1995a,b, 1996; Moramarco et al.
2008a, de Almeida and Bates 2013). As for the turbulent clear-
water case (Moramarco et al. 2008a), the analysis considers accel-
erated hypocritical flow profiles in mild slope channel with the
critical depth assigned as the downstream boundary condition.
Applicability criteria for approximated models in finite-length
channels are sought for. To this aim, the analytical solution of
the flow depth profiles of both Full and Approximated models, in
an infinitely wide channel, has been derived. Based on the theoret-
ical developments, the spatial distribution of the error for the
approximated models has been analyzed, as a function of the fluid
rheology. Assuming a threshold of 5% for the channel-length-
averaged error, the applicability conditions have been individuated
in terms of the governing dimensionless parameters, i.e. kinematic
wave and Froude numbers, for several values of the power-law
exponent.

The outline of the paper is as follows: Section 2 reports the
governing equations for the Full Wave, Diffusive Wave and
Kinematic Wave models, while in Section 3 the analytical
solutions for steady-state flow profiles are derived. Section 4
presents the results relative to the comparison of the Full with
both the Kinematic and Diffusive approximations and the
resulting applicability criteria. Finally, conclusions are drawn
in Section 5.
2. Governing equations

Let us consider a homogeneous layer of a shear-thinning
power-law fluid flowing over a fixed bed, with a constant incli-
nation (h) with respect to the horizontal plane, without lateral
inflow or outflow. The fluid is regarded as incompressible.
Assuming that:

� spatial variations occur over scales larger than the flow depth;
� flow resistance by the sidewalls is negligible with respect to
that by the bottom;

� surface tension is negligible;

the dimensional depth-averaged momentum and mass conser-
vation equations are (Di Cristo et al. 2017):

@~u~h
@~t

þ b
@~h~u2

@~x
þ g~h

@~h
@~x

cos h� g~h sin hþ ~sb
q

¼ 0 ð1Þ
@~h
@~t

þ @~u~h
@~x

¼ 0 ð2Þ

in which ~t is the time, ~x the streamwise coordinate, g and q the

gravity and the fluid density respectively, ~h the flow depth, ~u the
depth-averaged velocity, b the momentum correction factor and
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~sb the bottom shear stress. The terms in Eq. (1) represent, in the
order, the contributions of local (I) and convective (II) inertia, pres-
sure gradient (III), gravity (IV), friction (V).

Considering the flow in laminar regime, the power-law model
proposed by Ng and Mei (1994) is adopted. As described in Appen-
dix A, the expressions of the momentum correction factor and of
the bottom stress are:

b ¼ 2
2nþ 1
3nþ 2

> 1 ð3Þ

~sb ¼ ln
2nþ 1

n
~u
~h

� �n

ð4Þ

In (3), (4) mn and n denote the consistency and the rheological
index, respectively. The rheological index ranges between 0 and
1 for a shear-thinning fluid, whereas values larger than 1 represent
shear-thickening behavior. For a given flow rate ~q (for unit width),
the following dimensionless quantities are introduced:

x ¼ ~x= ~L; t ¼ ~t~uN=~L ; u ¼ ~u=~uN ; h ¼ ~h=~hN; sb ¼ ~sb=~sb;N
ð5Þ

where the subscript N denotes the normal, i.e. uniform, flow vari-
ables corresponding to ~q and ~L is the dimensional channel length.
Therefore, the dimensionless form of the flow equations (1), (2) is:

@hu
@t

þ b
@hu2

@x
þ h

F2
N

@h
@x

þ Khðsb
h
� 1Þ ¼ 0 ð6Þ

@h
@t

þ @uh
@x

¼ 0 ð7Þ

with

sb ¼ u
h

� �n
ð8Þ

In Eq. (6) the governing parameters are the normal Froude num-
ber, FN, and the kinematic wave number, K, expressed by:

FN ¼ ~uNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g~hN cos h

q ; K ¼ 1
F2
N

~L
~hN

tanh ð9Þ

In steady flow conditions, denoted with subscript S, Eqs. (6) and
(7), accounting for Eq. (8), reduce to the following system:

ð2b� 1ÞuS
duS

dx
þ ðb� 1Þu

2
S

hS
þ 1
F2
N

" #
dhS

dx
¼ K 1� un

S

hnþ1
S

 !
ð10Þ

d
dx

ðuShSÞ ¼ 0 ð11Þ

which may be rewritten in terms of flow depth only, as follows:

dhS;FM

dx
¼ KF2

N

h2ðn�1Þ
S;FM

h2nþ1
S;FM � 1

h3
S;FM � bF2

N

ð12Þ

Eq. (12), representing the steady formulation of the Full Wave
Model (FWM), puts in evidence that, similarly to the Turbulent
Clear-Water (TCW) case (Govindaraju et al. 1988a,b; Moramarco
et al. 2008a) even for the power-law fluids, the flow depth profile
depends only on FN and K, along with the boundary condition. In
what follows, similarly to the TCW case (Moramarco et al. 2008a)

one of the two pairs ðFN;KÞ or ðFN; K̂Þ, with K̂ ¼ KF2
N ¼ ~L=~hNtanh,

will be considered.
The Diffusive Wave Model (DWM) comes from Eq. (10) neglect-
ing the convective acceleration (i.e. the first term), therefore the
counterpart of Eq. (12) reads:

dhS;DWM

dx
¼ KF2

N

h2nþ1
S;DWM � 1

h2nþ1
S;DWM

ð13Þ

The steady formulation of the Kinematic Wave Model (KWM),
which disregards in Eq. (10) also the pressure gradient term, leads
to the following simple equation:

hS;KWM ¼ 1 ð14Þ
3. Solution of the steady flow depth profile

In order to quantify the errors of the approximated models, the
solution of Eqs. (12)–(14) is needed. While this is trivial for the
KWM (see Eq. (14)), the steady flow depth profile predicted by
both Full and Diffusive Wave models has to be evaluated from
the integration of the non-linear ordinary differential equations
(12) and (13), respectively. In the present paper, a closed form
solution has been derived. To this aim, as far as the FWM is con-
cerned, from the integration of Eq. (12) it follows:

x� const ¼ 1
KF2

N

Z
h2nþ1

h2nþ1 � 1
dh� bF2

N

Z
h2ðn�1Þ

h2nþ1 � 1
dh

" #
ð15Þ

In Eq. (15) the subscript S has been dropped for the sake of sim-
plicity. The r.h.s. of Eq. (15) is then rewritten as follows

� w

KF2
N

Z
nw

1� n
dn� bF2

N

Z
n�2w

1� n
dn

" #
ð16Þ

with

w ¼ 1
2nþ 1

; n ¼ h2nþ1 ð17Þ

Accounting for the Chebyshev integral identity (Weisstein,
1998):Z

xpð1� xÞqdx ¼ x1þpFðpþ 1;�q;pþ 2; xÞ
1þ p

ð18Þ

F(a,b;c;z) being the hypergeometric function, the closed form solu-
tion of Eq. (15) reads:

x ¼ � 1
KF2

N

h2nþ2

2ðnþ 1Þ F
2nþ 2
2nþ 1

;1;
4nþ 3
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F
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2nþ 1
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4n

2nþ 1
;h2nþ1

� �#
þ const ð19Þ

With reference to hypocritical currents and imposing that for x
= 0 a known flow depth ðh�Þ is prescribed, the flow depth profile,
for �1 6 xFM 6 0, may be deduced through the following implicit
equation:

xFM ¼ bF2
N

2ðnþ 1Þð2n� 1ÞK 2h2n�1ð1þ nÞF 2n� 1
2nþ 1
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KF2

N

1
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2nþ 1
;1;

4nþ 3
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�

�h2n�1
� ð1� 2nÞFð2nþ 2

2nþ 1
;1;

4nþ 3
2nþ 1

;h2nþ1
� Þ

�
ð20Þ
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Solution (20) holds for all positive n values except n = 1/2. For
such a value of the power-law exponent, the following expression
holds (Appendix B):

xFM ¼ 1
KF2

N

h� h� þ 1� bF2
N

2
ln

h� 1
h� � 1

� �
� 1þ bF2

N

2
ln

hþ 1
h� þ 1

� �
þ bF2

Nln
h
h�

� �" #

ð21Þ
Eqs. (20) and (21) allow to compute the flow depth profile of

steady flow of a power-law fluid, showing that the hypergeometric
functions, commonly employed in the context of turbulent clear-
water flows (Chyan-Deng 2014), may be fruitfully used even deal-
ing with different rheologies.

Starting from Eqs. (20) and (21) and taking the limit for bF2
N ! 0

its easy to verify that the counterparts of (20) and (21) for the Dif-
fusive Wave model read:

xDWM ¼ 1
2ðnþ 1Þð2n� 1ÞKF2

N

h2nþ2ð1� 2nÞF 2nþ 2
2nþ 1

;1;
4nþ 3
2nþ 1

;h2nþ1
� ��

�h2n�1
� ð1� 2nÞF 2nþ 2

2nþ 1
;1;

4nþ 3
2nþ 1

; h2nþ1
�

� ��
ð22Þ
xDWM ¼ 1
KF2

N

h� h� þ 1
2

ln
h� 1
h� � 1

� �
� ln

hþ 1
h� þ 1

� �� �	 

ð23Þ

For the sake of clarity, Figures 2 and 3 report the calculated
accelerated flow depth profiles for two different Froude numbers
values (namely, Fig. 2: FN ¼ 0:1; Fig. 3: FN ¼ 0:5) in a mild slope
channel, i.e. FN < FN;c , FN;c ¼ 1=

ffiffiffi
b

p
being the critical Froude number

(Campomaggiore et al. 2016). Both the Full and Diffusive Wave
models have been considered. Three different n values, namely n
= 0.25, 0.5, 1.0, have been selected, while the kinematic wave num-
ber (K) has been fixed equal to 5. At the downstream end of the

channel (x = 0), critical flow depth hc ¼
ffiffiffiffiffiffiffiffi
bF2

N
3
q

(Campomaggiore

et al. 2016) has been imposed. For the considered power-law expo-
nent values, Fig. 1 depicts the critical flow depth as a function of
the Froude number.

Figure 1 puts in evidence that, owing to the dependence of the
momentum correction factor on the power-law exponent (Eq. (3)),
the critical flow depth increases with n, for a fixed value of Froude
number. Moreover, it is also easy to verify that the critical Froude
number FN;c reduces with the power-law exponent, reaching the

minimum value ðFmin
N;c ¼ 0:913Þ for n = 1.

Figures 2 and 3 indicate that, independently of the Froude num-
ber, the power-law exponent strongly influences the flow depth
profiles, for both models. The increase of the power-law exponent
Fig. 1. Critical flow depth as a function of the Froude number.
leads to a growth of the flow depth gradient, for both models.
Therefore, a careful rheological characterization of the flow med-
ium appears to be mandatory for a correct prediction of the accel-
erated flow depth profiles.
4. Results

Based on the above closed forms of the steady flow depth pro-
files, the present section compares the results of the approximated
models, i.e. KWM and DWM, with those of the FWM. To this aim,
for a fixed value of the power-law exponent and of the (FN, K) pair,
for both Approximated Wave Models (AWM) the spatial distribu-
tion of the relative error is evaluated as:

eAWMðxÞ ¼ hAWMðxÞ � hFWMðxÞ
hFWMðxÞ ð24Þ

Following Moramarco et al. (2008a), the analysis has been car-
ried out referring to accelerated hypocritical currents in a mild
slope channel and assuming as downstream boundary condition
the critical flow depth. In this condition, the largest errors in the
application of the approximated models are expected
(Moramarco et al., 2008a). In what follows, for the sake of compar-
ison, the results concerning the turbulent clear water (TCW) case,
with the Manning resistance formula, are also discussed. The
closed form of the flow depth profile for this case can be found,
for instance, in (Chyan-Deng, 2014).

Figure 4 depicts the spatial distribution of the relative error as
far as the KWM is concerned (eKWM), for K = 3, 5, 10, 30. Three dif-
ferent n values have been considered, namely n = 0.25 (Fig. 4a), n =
0.5 (Fig. 4b), n = 1.0 (Fig. 4c), along with the turbulent clear water
case (TCW: Fig. 4d). The Froude number has been fixed equal to
0.1.

Similarly to the turbulent clear-water case (Fig. 4d), for all n val-
ues, Fig. 4a, b, c show that, independently of the K value, eKWM

increases monotonically with the channel abscissa x and decreases
with K. For all the values of the kinematic wave number, eKWM

reduces with n. The comparison with the turbulent clear-water
case (Fig. 4d) puts in evidence that the performances of the Kine-
matic Wave model significantly depend on the rheology of the
flowing medium: both a pronounced shear-thinning attitude and
a small value of the kinematic wave number induce an increase
of eKWM for a power-law fluid with respect to eTCWKWM . For instance,
for K = 3, at x = �0.5, the TCWmodel predicts eTCWKWM ¼ 0:84, whereas
en¼0:5
KWM ¼ 1:76. Therefore, migrating the evaluations for TCW to a
shear-thinning power-law fluid could imply a strong underestima-
tion of the error associated to the KWM model.

Figure 5 depicts the eDWM spatial distribution along the channel
for the same K and n values of Fig. 4, while Figs. 6 and 7 represent
the counterparts of Figs. 4 and 5 for FN = 0.5.

Figure 5 shows that for all the considered values of power-law
exponent and kinematic wave number, the magnitude of the eDWM

is much smaller than the one of the KWM. Moreover, owing to the
fulfillment of the downstream boundary condition and differently
from the KWM, eDWM is a non-monotone function along the chan-
nel. Even though all the considered cases show a similar trend, the
abscissa of the maximum value of |eDWM| depends on both K and n
values. An increase of both K and n values shifts downstream the |
eDWM| maximum location.

The comparison of Fig. 5a, b, c with Fig. 5d suggests that even in
applying the DWM model, the results deduced for TCW cannot be
safely applied for the power-law fluids, especially for small values
of n. Comparing Fig. 5c and Fig. 5d it follows that, independently of
the K value, although very close to the outlet eTCWDWM overwhelms the
corresponding one for the power-law fluid, in most of the channel
eTCWDWM=en¼0:5

DWM is smaller than 0.5. Therefore, similarly to the Kine-



Fig. 2. Flow depth profiles: FN = 0.1, K = 5. (a) FWM; (b) DWM.

Fig. 3. Flow depth profiles: FN = 0.5, K = 5. (a) FWM; (b) DWM.
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matic Wave model, it is expected that the bounds for a correct
application of the DWM in the presence of a power-law fluid
may significantly differ from those deduced for the TCW case.

Figures 6 and 7, representing the counterparts of Figs. 4 and 5
for FN = 0.5, show that an increase of the Froude number leads a
reduction, for all n and K values, of both eKWM and eDWM values,
although confirming the general trend suggested by the FN = 0.1
case.

An overall analysis of the accuracy of the Approximated Wave
models may be carried out considering the magnitude of the aver-
age of the error along the channel (Moramarco et al. 2008a) e�AWM .
For the KWM model the average was computed for
�0:95 6 x 6 �0:05, i.e. considering the part of the channel less
influenced by the boundary conditions (Singh and Aravamuthan
1997; Moramarco et al. 2008a). Figures 8 and 9 depict, for two
Froude numbers, namely FN=0.1 and FN=0.5, the averaged error

e�AWM as function of the dimensionless parameter K̂: Again the n =
0.25, 0.5, 1.0 values, along with the TCW case, have been consid-
ered for both approximated models (e�KWM Figs. 8a and 9a; e�DWM

Figs. 8b and 9b).
Figures 8a and 9 put in evidence that, independently of n values

and similarly to the TCW case, e�KWM curves overwhelm the corre-
sponding ones of the Diffusive Wave model (in the FN = 0.1 case
even of an order of magnitude) and, for both models, the error
reduces when the power-law exponent increases. For FN = 0.1
Fig. 8a and Fig. 8b show a monotonically decreasing behavior with

K̂. Moreover, they suggest that, in averaged sense, the results per-
taining to the turbulent clear-water case may be applicable even
for the laminar case, i.e. n = 1, especially for the KWM. Figure 9
indicates that an increase of the Froude number has a different

effect on the two approximated models. In fact, for a fixed K̂ value,
e�KWM decreases from the FN = 0.1 to the FN = 0.5 case, while e�DWM

increases. Furthermore, Fig. 9a hints the same monotone decrease

of the error with K̂ , while for the DWM Fig. 9b reveals for very

small values of K̂ an increasing trend reaching a peak value and
then the usual decreasing behavior. Finally, it is also confirmed
that even for FN=0.5, the turbulent and laminar clear-water flows
have similar results, especially for the KWM.

The results of Figs. 8 and 9 imply that it is possible to individu-

ate a lower bound of the kinematic wave number K̂LB, above which
the Approximate Wave Model is applicable with a prescribed accu-
racy. Assuming as applicability condition e�AWM 6 5% (Moramarco
et al., 2008a), for each n value, the applicability map in the plane

(K̂; FN) may be deduced for both Kinematic (Fig. 10a) and Diffusive
(Fig. 10b) Wave Models.

Figure 10a clearly shows that, for all n values, the lower bound

(K̂LB) above which the KWM is applicable, monotonically decreases
when the Froude number increases, as observed also for the TCW
case. Moreover, a decrease of the power-law exponent reduces
the extension of the applicability region. Differently, Fig. 10b indi-
cates that, as far as the DWM is concerned and similarly to the

TCW flow, the lower bound K̂LB is not a monotone function of FN
even for the power-law fluids. Also in this case, a reduction in
terms of power-law exponent induces a restriction of the applica-
bility region of the DWM.

Figure 10 points out that, for each value of the power-law expo-

nent, it exists a threshold value K̂TV ¼ max
FN

K̂LB, which may be con-



Fig. 4. Spatial distribution of the relative error of the KWM (FN = 0.1): (a): n = 0.25; (b): n = 0.5; (c): n = 1.0; (d): TCW.

Fig. 5. Spatial distribution of the relative error of the DWM (FN = 0.1): (a): n = 0.25; (b): n = 0.5; (c): n = 1.0; (d): TCW.

590 C. Di Cristo et al. / Journal of Hydrology 559 (2018) 585–595



Fig. 6. Spatial distribution of the relative error of the KWM (FN = 0.5): (a): n = 0.25; (b): n = 0.5; (c): n = 1.0; (d): TCW.

Fig. 7. Spatial distribution of the relative error of the DWM (FN = 0.5): (a): n = 0.25; (b): n = 0.5; (c): n = 1.0; (d): TCW.
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Fig. 8. Spatial distribution of the averaged relative error (FN = 0.1). (a) KWM; (b) DWM.

Fig. 9. Spatial distribution of the averaged relative error (FN = 0.5). (a) KWM; (b) DWM.

Fig. 10. Kinematic (a) and Diffusive (b) Wave Models applicability maps.
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sidered as a conservative estimate of the lower bound for the appli-
cability of the approximate models with an error less than 5%, for
all subcritical Froude numbers. For the TCW flow, these threshold

values are K̂TCW
TV ¼ 1:4 (KWM) and K̂TCW

TV ¼ 0:6 (DWM), which are
in perfect agreement with those deduced by Moramarco et al.
(2008a). Figure 11 reports, for both DWM and KWM, the threshold

values K̂TV obtained for several rheological exponents (black lines),

which define, for each fluid, the limiting K̂ value above which the
approximated models can be safely applied. For the sake of com-
parison, also the corresponding ones for the TCW case (K̂TCW
TV with

grey color) are reported. It can be observed that the DWM has a lar-
ger applicability range than the KWM.

Figure 11 demonstrates that in presence of huge quantities
of sediments, which may lend the mixture a shear-thinning
power-law rheology, the applicability criteria deduced for
clear-water may lead to an incorrect use of both approxi-
mated wave models. Results reported in Fig. 11 constitute a
criterion for the correct application of the KWM and DWM



Fig. 11. Minimum values of the threshold value K̂TV for the application of KWM and
DWM. Black lines: power-law fluid, Grey lines: TCW.
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models for mud-flows, extending to power-law fluids the
results available in the literature for turbulent clear-water
flows.
5. Conclusions

The paper investigated the applicability of the Kinematic and
Diffusive Wave Models for flows of shear-thinning fluids described
by a power-law rheology. The study represents an extension to the
power-law rheology of the steady state analyses previously devel-
oped for turbulent clear-water (TCW) flows.

The procedure is based on the evaluation of the error associated
to the application of the approximated models, accounting for the
non-linearity of the governing equations. The analysis is carried
out starting from the analytical solution of the flow depth profiles
of both Full and Approximated models, in an infinitely wide chan-
nel under steady state conditions of flow. Similarly to the turbulent
clear-water case, accelerated hypocritical flows in mild slope chan-
nel, with free-flow outlet condition, have been investigated.

It has been found that, in presence of a power-law fluid, the spa-
tial distribution of the error for both approximated models differs
with respect to that of TCW flows, revealing the important role of
the rheology on the model selection. The overall analysis of the
accuracy of the approximated models has been carried out consid-
ering the magnitude of the average error along the channel length
for different rheological exponents and governing dimensionless
numbers. Assuming a threshold on the average error of 5%, for a
fixed value of the power-law index, it has been individuated a limit

value of the kinematic wave number K̂TV , above which the approx-
imate models are applicable, for all the subcritical Froude number
values. Present results show that the applicability range of the Dif-
fusive Wave model is larger than that of the Kinematic model and
in both cases it decreases when n reduces. Moreover, these appli-
cability ranges, especially for fluids with a pronounced shear-
thinning attitude, strongly differ from the corresponding ones for
the turbulent clear-water case. In conclusion, present study reveals
that the results available in the literature for clear-water flowsmay
not be valid for power-law fluids, and it provides novel specific
applicability criteria for this class of fluids. In a future research,
the present analysis will be extended considering different
power-law rheologies, such as the one proposed by Lanzoni et al.
(2017) for debris flows in drained inertial range. Moreover, for
addressing problems with realistic mountain topographies, often
associated to natural avalanches and debris flows, the analysis
could be performed adopting depth-averaged models able to
include the bottom curvature effect, such as, for instance, Ionescu
(2013a,b) or Fent et al. (2018).
Appendix A.

Let us consider a two-dimensional laminar flow of a thin layer
of mud down a plane inclined of h with respect to the horizontal
plane. Let be the ~x -axis along and the ~z -axis normal to the plane
bed. Denoting with ~ux and ~uz the dimensional longitudinal and
transverse velocity components, with ~p the dimensional pressure

and with ~h the dimensional depth normal to the bed, the long-
wave expansion of the equations of motion are the following (Ng
and Mei, 1994):

@~ux

@~x
þ @~uz

@~z
¼ 0 ðA:1Þ

@~ux

@~t
þ ~ux

@~ux

@~x
þ ~uz

@~ux

@~z
þ 1
q
@~p
@~x

¼ g sin hþ 1
q
@~sxz
@~z

¼ 0 ðA:2Þ

1
q
@~uz

@~z
þ g cos h ¼ 0 ðA:3Þ

The following boundary conditions hold:

~ux ¼ ~uz ¼ 0 at ~z ¼ 0 ðA:4Þ

~uz ¼ @~h
@~t

þ ~ux
@~h
@~x

at ~z ¼ ~h ðA:5Þ

@~ux

@~z
¼ p ¼ 0 at ~z ¼ ~h ðA:6Þ

For a power-law fluid, the following shear stress relation is con-
sidered (Ng and Mei,1994):

~sxz ¼ lnj
@~ux

@~z
jn�1 @~ux

@~z
ðA:7Þ

It is easy to verify that in uniform flow conditions only the
streamwise component of the velocity is different from zero and
for a power-law fluid it reads:

~ux ¼ 1þ 2n
1þ n

~u 1� 1� ~z
~h

� �nþ1
n

" #
ðA:8Þ

Assuming that Eq. (A.8), strictly valid in uniform condition,

holds even in a transient and non-uniform flow, but with ~h depen-
dent on ~x and ~t, Eqs. (1) and (2) are obtained integrating Eqs. (A.1)-
(A.3) over the film thickness, applying the Leibniz rule and
accounting for the boundary conditions (A.4)-(A.6) along with
(A.7).

The expression of the bottom stress sb in Eq. (4) is deduced from
Eq. (A.7), evaluated at ~z ¼ 0, accounting for (A.8). The expression
(3) of the flux correction factor b straightforwardly follows from
its definition:

b ¼ 1
~h~u2

Z ~h

0
~u2
xd~z ðA:9Þ

taking into account the velocity profile (A.8).

Appendix B.

This appendix illustrates the derivation of Eq. (21) from Eq. (16)
for n = 1/2. For this power-law exponent value, it results w = 1/2
and Eq. (16) can be therefore rewritten as:

� 1
2KF2

N

Z ffiffiffi
n

p
1� n

dn� bF2
N

Z
1

nð1� nÞdn
� �

ðB:1Þ
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Assuming g ¼ ffiffiffi
n

p
; it results dn = 2gdg and the first integral can

be rewritten and solved:Z ffiffiffi
n

p
1� n

dn ¼ �2
Z

g2

ðg2 � 1Þ dg ¼ �2g� ln
g� 1
gþ 1

ðB:2Þ

In terms of the n variable, the solution is:Z ffiffiffi
n

p
1� n

dn ¼ �2
ffiffiffi
n

p
� ln

ffiffiffi
n

p � 1ffiffiffi
n

p þ 1
ðB:3Þ

Concerning the second integral in Eq. (B.1), it is easily solved as:Z
1
n
þ 1
1� n

� �
dn ¼ ln n� lnðn� 1Þ ðB:4Þ

Finally, the solution of Eq. (B.1) is:

1
KF2

N

ffiffiffi
n

p
þ 1
2
ln

ffiffiffi
n

p � 1ffiffiffi
n

p þ 1
� bF2

N

2
ðln n� lnðn� 1ÞÞ

" #
ðB:5Þ

Being n ¼ h2 (Eq. (17)), for hypocritical currents imposing at x =
0 a known depth (h⁄), the flow depth profile for �1 6 xFM 6 0, may
be deduced from Eq. (B.5), obtaining

xFM ¼ 1
KF2

N

h� h� þ 1� bF2
N

2
ln

h� 1
h� � 1

� �
� 1þ bF2

N

2
ln

hþ 1
h� þ 1

� �
þ bF2

Nln
h
h�

� �" #

ðB:6Þ
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