We present 0.8-5.2 micron spectroscopy of the compact source at the base of a
variable nebula (McNeil's Nebula Object) in the Lynds 1630 dark cloud that went
into outburst in late 2003. The spectrum of this object reveals an extremely
red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice
absorption feature, and a solid state CO absorption feature at 4.7 microns. In
addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen
lines exhibit P Cygni profiles, as do two lines of He I, although the emission
features are very weak in the latter. The Brackett lines, however, are seen to
be purely in emission. The P Cygni profiles clearly indicate that mass outflow
is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not
yield consistent estimates of the reddening, nor do they agree with the
extinction estimated from the ice feature (A_V ~ 11). We propose that these
lines are optically thick and are produced in a dense, ionized wind. The
near-infrared spectrum does not appear similar to any known FUor or EXor
object. However, all evidence suggests that McNeil's Nebula Object is a
heavily-embedded low-mass Class I protostar, surrounded by a disk, whose
brightening is due to a recent accretion event.Comment: 11 pages, 2 ps figures, accepted for publication in ApJ Letter