178 research outputs found

    Suffix-specific RNAi Leads to Silencing of F Element in Drosophila melanogaster

    Get PDF
    Separate conserved copies of suffix, a short interspersed Drosophila retroelement (SINE), and also divergent copies in the 3′ untranslated regions of the three genes, have already been described. Suffix has also been identified on the 3′ end of the Drosophila non-LTR F element, where it forms the last conserved domain of the reverse transcriptase (RT). In our current study, we show that the separate copies of suffix are far more actively transcribed than their counterparts on the F element. Transcripts from both strands of suffix are present in RNA preparations during all stages of Drosophila development, providing the potential for the formation of double-stranded RNA and the initiation of RNA interference (RNAi). Using in situ RNA hybridization analysis, we have detected the expression of both sense and antisense suffix transcripts in germinal cells. These sense and antisense transcripts are colocalized in the primary spermatocytes and in the cytoplasm of the nurse cells, suggesting that they form double-stranded RNA. We performed further analyses of suffix-specific small RNAs using northern blotting and SI nuclease protection assays. Among the total RNA preparations isolated from embryos, larvae, pupae and flies, suffix-specific small interfering RNAs (siRNAs) were detected only in pupae. In wild type ovaries, both the siRNAs and longer suffix-specific Piwi-interacting RNAs (piRNAs) were observed, whereas in ovaries of the Dicer-2 mutant, only piRNAs were detected. We further found by 3′ RACE that in pupae and ovaries, F element transcripts lacking the suffix sequence are also present. Our data provide direct evidence that suffix-specific RNAi leads to the silencing of the relative LINE (long interspersed element), F element, and suggests that SINE-specific RNA interference could potentially downregulate a set of genes possessing SINE stretches in their 5′ or 3′ non-coding regions. These data also suggest that double stranded RNAs possessing suffix are processed by both RNAi and an additional silencing mechanism

    Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2

    Get PDF
    Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool known to date

    Domain Swapping and Different Oligomeric States for the Complex Between Calmodulin and the Calmodulin-Binding Domain of Calcineurin A

    Get PDF
    BACKGROUND: Calmodulin (CaM) is a ubiquitously expressed calcium sensor that engages in regulatory interactions with a large number of cellular proteins. Previously, a unique mode of CaM target recognition has been observed in the crystal structure of a complex between CaM and the CaM-binding domain of calcineurin A. METHODOLOGY/PRINCIPAL FINDINGS: We have solved a high-resolution crystal structure of a complex between CaM and the CaM-binding domain of calcineurin A in a novel crystal form, which shows a dimeric assembly of calmodulin, as observed before in the crystal state. We note that the conformation of CaM in this complex is very similar to that of unliganded CaM, and a detailed analysis revels that the CaM-binding motif in calcineurin A is of a novel '1-11' type. However, using small-angle X-ray scattering (SAXS), we show that the complex is fully monomeric in solution, and a structure of a canonically collapsed CaM-peptide complex can easily be fitted into the SAXS data. This result is also supported by size exclusion chromatography, where the addition of the ligand peptide decreases the apparent size of CaM. In addition, we studied the energetics of binding by isothermal titration calorimetry and found them to closely resemble those observed previously for ligand peptides from CaM-dependent kinases. CONCLUSIONS/SIGNIFICANCE: Our results implicate that CaM can also form a complex with the CaM-binding domain of calcineurin in a 1 ratio 1 stoichiometry, in addition to the previously observed 2 ratio 2 arrangement in the crystal state. At the structural level, going from 2 ratio 2 association to two 1 ratio 1 complexes will require domain swapping in CaM, accompanied by the characteristic bending of the central linker helix between the two lobes of CaM

    In Drosophila melanogaster the COM Locus Directs the Somatic Silencing of Two Retrotransposons through both Piwi-Dependent and -Independent Pathways

    Get PDF
    BACKGROUND: In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic cells. PRINCIPAL FINDINGS: Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is controlled by the heterochromatic COM locus. CONCLUSION: Our data shed further light on the silencing mechanism that acts to target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon mobilization

    An endogenous small interfering RNA pathway in Drosophila

    Get PDF
    Drosophila endogenous small RNAs are categorized according to their mechanisms of biogenesis and the Argonaute protein to which they bind. MicroRNAs are a class of ubiquitously expressed RNAs of 22 nucleotides in length, which arise from structured precursors through the action of Drosha - Pasha and Dicer- 1-Loquacious complexes(1-7). These join Argonaute-1 to regulate gene expression(8,9). A second endogenous small RNA class, the Piwi-interacting RNAs, bind Piwi proteins and suppress transposons(10,11). Piwi- interacting RNAs are restricted to the gonad, and at least a subset of these arises by Piwi- catalysed cleavage of single-stranded RNAs12,13. Here we show that Drosophila generates a third small RNA class, endogenous small interfering RNAs, in both gonadal and somatic tissues. Production of these RNAs requires Dicer- 2, but a subset depends preferentially on Loquacious(1,4,5) rather than the canonical Dicer- 2 partner, R2D2 ( ref. 14). Endogenous small interfering RNAs arise both from convergent transcription units and from structured genomic loci in a tissue- specific fashion. They predominantly join Argonaute- 2 and have the capacity, as a class, to target both protein- coding genes and mobile elements. These observations expand the repertoire of small RNAs in Drosophila, adding a class that blurs distinctions based on known biogenesis mechanisms and functional roles

    Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in <it>Schizosaccharomyces pombe </it>have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on <it>Drosophila </it>heterochromatin structure.</p> <p>Results</p> <p>The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (<it>dcr-2, ago1, ago2, piwi, Lip [D], aub </it>and <it>hls</it>). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of <it>white-mottled4h </it>position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using <it>Drosophila </it>embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites.</p> <p>Conclusion</p> <p>Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in <it>Drosophila</it>. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in <it>Drosophila</it>.</p

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinus similis (LsAA9A) and Collariella virescens (CvAA9A). LsAA9A and CvAA9A cleave a range of polysaccharides, including cellulose, xyloglucan, mixed-linkage glucan and glucomannan. LsAA9A additionally cleaves isolated xylan substrates. The structures of CvAA9A and of LsAA9A bound to cellulosic and non-cellulosic oligosaccharides provide insight into the molecular determinants of their specificity. Spectroscopic measurements reveal differences in copper co-ordination upon the binding of xylan and glucans. LsAA9A activity is less sensitive to the reducing agent potential when cleaving xylan, suggesting that distinct catalytic mechanisms exist for xylan and glucan cleavage. Overall, these data show that AA9 LPMOs can display different apparent substrate specificities dependent upon both productive protein–carbohydrate interactions across a binding surface and also electronic considerations at the copper active site
    corecore