325 research outputs found

    Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain

    Get PDF
    International audienceBACKGROUND: Rett syndrome (RTT, MIM #312750) is a severe neurological disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Female patients are affected with an incidence of 1/15000 live births and develop normally from birth to 6-18 months of age before the onset of deficits in autonomic, cognitive, motor functions (stereotypic hand movements, impaired locomotion) and autistic features. Studies on Mecp2 mouse models, and specifically null mice, revealed morphological and functional alterations of neurons. Several functions that are regulated by bioaminergic nuclei or peripheral ganglia are impaired in the absence of Mecp2. RESULTS: Using high performance liquid chromatography, combined with electrochemical detection (HPLC/EC) we found that Mecp2(-/y) mice exhibit an alteration of DA metabolism in the ponto-bulbar region at 5 weeks followed by a more global alteration of monoamines when the disease progresses (8 weeks). Hypothalamic measurements suggest biphasic disturbances of norepinephrine and serotonin at pathology onset (5 weeks) that were found stabilized later on (8 weeks). Interestingly, the postnatal nigrostriatal dopaminergic deficit identified previously does not parallel the reduction of the other neurotransmitters investigated. Finally, dosage in cortical samples do not suggest modification in the monoaminergic content respectively at 5 and 8 weeks of age. CONCLUSIONS: We have identified that the level of catecholamines and serotonin is differentially affected in Mecp2(-/y) brain areas in a time-dependent fashion

    Increasing the potential for malaria elimination by targeting zoophilic vectors

    Get PDF
    Countries in the Asia Pacific region aim to eliminate malaria by 2030. A cornerstone of malaria elimination is the effective management of Anopheles mosquito vectors. Current control tools such as insecticide treated nets or indoor residual sprays target mosquitoes in human dwellings. We find in a high transmission region in India, malaria vector populations show a high propensity to feed on livestock (cattle) and rest in outdoor structures such as cattle shelters. We also find evidence for a shift in vector species complex towards increased zoophilic behavior in recent years. Using a malaria transmission model we demonstrate that in such regions dominated by zoophilic vectors, existing vector control tactics will be insufficient to achieve elimination, even if maximized. However, by increasing mortality in the zoophilic cycle, the elimination threshold can be reached. Current national vector control policy in India restricts use of residual insecticide sprays to domestic dwellings. Our study suggests substantial benefits of extending the approach to treatment of cattle sheds, or deploying other tactics that target zoophilic behavior. Optimizing use of existing tools will be essential to achieving the ambitious 2030 elimination target

    Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By revealing historical and present plant use, ethnobotany contributes to drug discovery and socioeconomic development. Nepal is a natural storehouse of medicinal plants. Although several ethnobotanical studies were conducted in the country, many areas remain unexplored. Furthermore, few studies have compared indigenous plant use with reported phytochemical and pharmacological properties.</p> <p>Methods</p> <p>Ethnopharmacological data was collected in the Rasuwa district of Central Nepal by conducting interviews and focus group discussions with local people. The informant consensus factor (F<sub>IC</sub>) was calculated in order to estimate use variability of medicinal plants. Bio-efficacy was assessed by comparing indigenous plant use with phytochemical and pharmacological properties determined from a review of the available literature. Criteria were used to identify high priority medicinal plant species.</p> <p>Results</p> <p>A total of 60 medicinal formulations from 56 plant species were documented. Medicinal plants were used to treat various diseases and disorders, with the highest number of species being used for gastro-intestinal problems, followed by fever and headache. Herbs were the primary source of medicinal plants (57% of the species), followed by trees (23%). The average F<sub>IC</sub> value for all ailment categories was 0.82, indicating a high level of informant agreement compared to similar studies conducted elsewhere. High F<sub>IC </sub>values were obtained for ophthalmological problems, tooth ache, kidney problems, and menstrual disorders, indicating that the species traditionally used to treat these ailments are worth searching for bioactive compounds: <it>Astilbe rivularis</it>, <it>Berberis asiatica</it>, <it>Hippophae salicifolia, Juniperus recurva</it>, and <it>Swertia multicaulis</it>. A 90% correspondence was found between local plant use and reported plant chemical composition and pharmacological properties for the 30 species for which information was available. Sixteen medicinal plants were ranked as priority species, 13 of which having also been prioritized in a country-wide governmental classification.</p> <p>Conclusions</p> <p>The <it>Tamang </it>people possess rich ethnopharmacological knowledge. This study allowed to identify many high value and high priority medicinal plant species, indicating high potential for economic development through sustainable collection and trade.</p

    The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells.</p> <p>Methods</p> <p>Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT<sup>®</sup>), apoptosis (SensoLyte<sup>® </sup>Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting.</p> <p>Results</p> <p>Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway.</p> <p>Conclusions</p> <p>These data demonstrate that the novel curcumin analog FLLL32 has biologic activity against OSA cell lines through inhibition of STAT3 function and expression. Future work with FLLL32 will define the therapeutic potential of this compound <it>in vivo</it>.</p

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe
    corecore