354 research outputs found
Electrostatics in a simple wormhole revisited
The electrostatic potential generated by a point charge at rest in a simple
static, spherically symmetric wormhole is given in the form of series of
multipoles and in closed form. The general potential which is physically
acceptable depends on a parameter due to the fact that the monopole solution is
arbitrary. When the wormhole has Z2-symmetry, the potential is completely
determined. The calculation of the electrostatic self-energy and of the
self-force is performed in all cases considered.Comment: 16 pages, no figure
Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization
Modern intense ultrafast pulsed lasers generate an electric field of
sufficient strength to permit tunnel ionization of the valence electrons in
atoms. This process is usually treated as a rapid succession of isolated
events, in which the states of the remaining electrons are neglected. Such
electronic interactions are predicted to be weak, the exception being
recollision excitation and ionization caused by linearly-polarized radiation.
In contrast, it has recently been suggested that intense field ionization may
be accompanied by a two-stage `shake-up' reaction. Here we report a unique
combination of experimental techniques that enables us to accurately measure
the tunnel ionization probability for argon exposed to 50 femtosecond laser
pulses. Most significantly for the current study, this measurement is
independent of the optical focal geometry, equivalent to a homogenous electric
field. Furthermore, circularly-polarized radiation negates recollision. The
present measurements indicate that tunnel ionization results in simultaneous
excitation of one or more remaining electrons through shake-up. From an atomic
physics standpoint, it may be possible to induce ionization from specific
states, and will influence the development of coherent attosecond XUV radiation
sources. Such pulses have vital scientific and economic potential in areas such
as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Quasistationary Stabilization of the Decay of a Weakly-Bound Level and Its Breakdown in a Strong Laser Field
Although it was pointed out about 10 years ago that an atomic decay rate might decrease as the intensity of a high-frequency laser field increases, there still does not exist any complete understanding of either the physical origin of this interesting nonlinear phenomenon or its dependence on the atomic and field parameters. Essentially, the problem consists in that the phenomenon requires a major modification of the standard picture of photoeffect in a strong laser field. In Reference #1 the origin of this stabilization is related to a particular distortion of an atomic potential by an intense monochromatic high-frequency field. This phenomenon is called adiabatic or quasistationary stabilization (QS). For the case of Rydberg levels, another (interference) mechanism of QS was suggested. Both theories predict an unlimited decrease of the decay rate (or of the width Î of an atomic level, i.e., of the imaginary part of the complex quasienergy, Δ = Re Δ â iÎ/2 ) as the laser field amplitude increases. In recent years the idea of âdynamic stabilizationâ (DS) has become popular. It originates from the pulse form of a laser field rather than from any intrinsic property of the atom in a strong monochromatic field. Within this model the numerous simulations point also to the possibility of a breakdown of stabilization for the case of superintense short laser pulses. However, a recent paper, using the quasistationary quasienergy states (QQES) as an adiabatic basis for the laser pulse has shown that DS has the same (quasistationary) origin as QS. Finally, a number of authors deny the existence of stabilization, in particular, of QS for ionization from a short-range potential and of DS in pulsed fields. Obviously, these controversies and ambiguities are caused by the complexity of the numerical solution of the Cauchy problem for the time-dependent Schrödinger equation in a strong field and by the absence of analyses for exactly solvable analytical models. We analyze the exactly solvable problem of an electron in a three-dimensional, short-range potential and consider the two questions: does a QS-like behavior of the decay rate exist for this model, and, if so, is there an upper intensity limit of the QS regime
Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?
International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90â160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity
HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction
Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1
Carbon Dioxide Utilisation -The Formate Route
UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient âCO2 sinksâ. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the âgreenâ advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe
Updated measurements of exclusive J/Ï and Ï(2S) production cross-sections in pp collisions at âs = 7 TeV
The differential cross-section as a function of rapidity has been measured for the exclusive production of J/Ï and Ï(2S) mesons in protonâproton collisions at âs = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pbâ1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
- âŠ