129 research outputs found

    CRP polymorphisms and chronic kidney disease in the third national health and nutrition examination survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>CRP </it>gene polymorphisms are associated with serum C-reactive protein concentrations and may play a role in chronic kidney disease (CKD) progression. We recently reported an association between the gene variant rs2808630 and CKD progression in African Americans with hypertensive kidney disease. This association has not been studied in other ethnic groups.</p> <p>Methods</p> <p>We used data from 5955 participants from Phase 2 of The Third National Health and Nutrition Examination Survey (1991-1994) to study the association between <it>CRP </it>polymorphisms and CKD prevalence in a population-based sample. The primary outcome was CKD defined as estimated glomerular filtration rate (eGFR) <60 ml/min or the presence of albuminuria. Secondary outcomes were the presence of albuminuria (any degree) and continuous eGFR. Six single nucleotide polymorphisms (SNPs) from the <it>CRP </it>gene, rs2808630, rs1205, rs3093066, rs1417938, rs3093058, and rs1800947, were evaluated.</p> <p>Results</p> <p><it>CRP </it>rs2808630 AG compared to the referent AA genotype was associated with CKD in non-Hispanic blacks (n = 1649, 293 of whom had CKD) with an adjusted odds ratio (OR) of 3.09 (95% CI 1.65-5.8; p = 0.001). For the secondary outcomes, rs2808630 AG compared to the referent AA genotype was associated with albuminuria with an adjusted OR of 3.07 (95% CI 1.59-5.94; p = 0.002), however not with eGFR. There was no association between the SNPs and CKD, albuminuria or eGFR in non-Hispanic whites or Mexicans Americans.</p> <p>Conclusions</p> <p>In this cross-sectional study, the 3' flanking <it>CRP </it>gene variant rs2808630 was associated with CKD, mainly through its association with albuminuria in the non-Hispanic blacks. Despite not finding an association with eGFR, our results support our previous study demonstrating an association between <it>CRP </it>gene variant rs2808630 and CKD progression in a longitudinal cohort of African American with hypertensive kidney disease.</p

    Characterization of street food consumption in palermo: possible effects on health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Street Food (SF) consists of out-of-home food consumption and has old, historical roots with complex social-economic and cultural implications. Despite the emergence of modern fast food, traditional SF persists worldwide, but the relationship of SF consumption with overall health, well-being, and obesity is unknown.</p> <p>Methods</p> <p>This is an observational, cross-sectional study. The study was performed in Palermo, the largest town of Sicily, Italy. Two groups were identified: consumers of SF (n = 687) and conventional restaurant food (RES) consumers (n = 315). Study subjects answered a questionnaire concerning their health conditions, nutritional preferences, frequency of consumption of SF and a score relative to SF consumption ranging from 0 to 20 was calculated.</p> <p>Results</p> <p>Body mass index (BMI, kg/m<sup>2</sup>) was significantly and independently correlated with the score of street food consumption (r = 0,103; p < 0.002). The prevalence of different diseases, including hypertension and type 2 diabetes, and the use of medications did not differ between the two groups. Milza (a sandwich stuffed with thin slice of bovine spleen and lung) consumers had a significantly higher prevalence of hypertension (12.2% vs 6.2% in non consumers; p < 0.005) and in this subgroup the use of anti-hypertensive drugs was inversely correlated with the frequency of milza consumption (r = 0.11; P = 0.010).</p> <p>Conclusions</p> <p>This study suggests that SF consumption in Palermo is associated with a higher BMI and higher prevalence of hypertension in milza consumers. Further studies should evaluate whether frequent SF consumers have unfavourable metabolic and cardiovascular profile.</p

    A Novel Function of DELTA-NOTCH Signalling Mediates the Transition from Proliferation to Neurogenesis in Neural Progenitor Cells

    Get PDF
    A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA–NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    Jet quenching

    Full text link
    We present a comprehensive review of the physics of hadron and jet production at large transverse momentum in high-energy nucleus-nucleus collisions. Emphasis is put on experimental and theoretical "jet quenching" observables that provide direct information on the (thermo)dynamical properties of hot and dense QCD matter.Comment: Springer Verlag. Landolt-Boernstein Vol. 1-23A. 49 pages. 36 figures. Minor corrections & references adde

    Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea

    Get PDF
    Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions
    • 

    corecore