41 research outputs found

    Sphingomyelin is associated with kidney disease in type 1 diabetes (The FinnDiane Study)

    Get PDF
    Diabetic kidney disease, diagnosed by urinary albumin excretion rate (AER), is a critical symptom of chronic vascular injury in diabetes, and is associated with dyslipidemia and increased mortality. We investigated serum lipids in 326 subjects with type 1 diabetes: 56% of patients had normal AER, 17% had microalbuminuria (20 ≀ AER < 200 Όg/min or 30 ≀ AER < 300 mg/24 h) and 26% had overt kidney disease (macroalbuminuria AER ≄ 200 Όg/min or AER ≄ 300 mg/24 h). Lipoprotein subclass lipids and low-molecular-weight metabolites were quantified from native serum, and individual lipid species from the lipid extract of the native sample, using a proton NMR metabonomics platform. Sphingomyelin (odds ratio 2.53, P < 10−7), large VLDL cholesterol (odds ratio 2.36, P < 10−10), total triglycerides (odds ratio 1.88, P < 10−6), omega-9 and saturated fatty acids (odds ratio 1.82, P < 10−5), glucose disposal rate (odds ratio 0.44, P < 10−9), large HDL cholesterol (odds ratio 0.39, P < 10−9) and glomerular filtration rate (odds ratio 0.19, P < 10−10) were associated with kidney disease. No associations were found for polyunsaturated fatty acids or phospholipids. Sphingomyelin was a significant regressor of urinary albumin (P < 0.0001) in multivariate analysis with kidney function, glycemic control, body mass, blood pressure, triglycerides and HDL cholesterol. Kidney injury, sphingolipids and excess fatty acids have been linked in animal models—our exploratory approach provides independent support for this relationship in human patients with diabetes

    Partitioning of copy-number genotypes in pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) and polymorphisms (CNPs) have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in <it>Birdsuite </it>and <it>PLINK </it>for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data.</p> <p>Results</p> <p>We have developed <it>CNGen</it>, a new software for the partitioning of copy number polymorphism using the integrated genotypes from <it>Birdsuite </it>with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype.</p> <p>Conclusions</p> <p><it>CNGen </it>is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the <it>Python </it>interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.</p

    A family based tailored counselling to increase non-exercise physical activity in adults with a sedentary job and physical activity in their young children: design and methods of a year-long randomized controlled trial

    Get PDF
    Background. Epidemiological evidence suggests that decrease in sedentary behaviour is beneficial for health. This family based randomized controlled trial examines whether face-to-face delivered counselling is effective in reducing sedentary time and improving health in adults and increasing moderate-to-vigorous activities in children. Methods. The families are randomized after balancing socioeconomic and environmental factors in the JyvÀskylÀ region, Finland. Inclusion criteria are: healthy men and women with children 3-8 years old, and having an occupation where they self-reportedly sit more than 50% of their work time and children in all-day day-care in kindergarten or in the first grade in primary school. Exclusion criteria are: body mass index > 35 kg/m2, self-reported chronic, long-term diseases, families with pregnant mother at baseline and children with disorders delaying motor development. From both adults and children accelerometer data is collected five times a year in one week periods. In addition, fasting blood samples for whole blood count and serum metabonomics, and diurnal heart rate variability for 3 days are assessed at baseline, 3, 6, 9, and 12 months follow-up from adults. Quadriceps and hamstring muscle activities providing detailed information on muscle inactivity will be used to realize the maximum potential effect of the intervention. Fundamental motor skills from children and body composition from adults will be measured at baseline, and at 6 and 12 months follow-up. Questionnaires of family-influence-model, health and physical activity, and dietary records are assessed. After the baseline measurements the intervention group will receive tailored counselling targeted to decrease sitting time by focusing on commute and work time. The counselling regarding leisure time is especially targeted to encourage toward family physical activities such as visiting playgrounds and non-built environments, where children can get diversified stimulation for play and practice fundamental of motor skills. The counselling will be reinforced during the first 6 months followed by a 6-month maintenance period. Discussion. If shown to be effective, this unique family based intervention to improve lifestyle behaviours in both adults and children can provide translational model for community use. This study can also provide knowledge whether the lifestyle changes are transformed into relevant biomarkers and self-reported health. Trial registration number. ISRCTN: ISRCTN28668090peerReviewe

    Metabolic profiling of pregnancy: cross-sectional and longitudinal evidence

    Get PDF
    BackgroundPregnancy triggers well-known alterations in maternal glucose and lipid balance but its overall effects on systemic metabolism remain incompletely understood.MethodsDetailed molecular profiles (87 metabolic measures and 37 cytokines) were measured for up to 4260 women (24–49 years, 322 pregnant) from three population-based cohorts in Finland. Circulating molecular concentrations in pregnant women were compared to those in non-pregnant women. Metabolic profiles were also reassessed for 583 women 6 years later to uncover the longitudinal metabolic changes in response to change in the pregnancy status.ResultsCompared to non-pregnant women, all lipoprotein subclasses and lipids were markedly increased in pregnant women. The most pronounced differences were observed for the intermediate-density, low-density and high-density lipoprotein triglyceride concentrations. Large differences were also seen for many fatty acids and amino acids. Pregnant women also had higher concentrations of low-grade inflammatory marker glycoprotein acetyls, higher concentrations of interleukin-18 and lower concentrations of interleukin-12p70. The changes in metabolic concentrations for women who were not pregnant at baseline but pregnant 6 years later (or vice versa) matched (or were mirror-images of) the cross-sectional association pattern. Cross-sectional results were consistent across the three cohorts and similar longitudinal changes were seen for 653 women in 4-year and 497 women in 10-year follow-up. For multiple metabolic measures, the changes increased in magnitude across the three trimesters.ConclusionsPregnancy initiates substantial metabolic and inflammatory changes in the mothers. Comprehensive characterisation of normal pregnancy is important for gaining understanding of the key nutrients for fetal growth and development. These findings also provide a valuable molecular reference in relation to studies of adverse pregnancy outcomes.</div

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
    corecore