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Ville-Petteri Mäkinen1,2,3, Pasi Soininen4, Carol Forsblom2,3, Maija Parkkonen2,3, Petri Ingman5, Kimmo Kaski1, Per-Henrik Groop2,3,*
and Mika Ala-Korpela1,*, on behalf of the FinnDiane Study Group

1 Computational Medicine Research Group, Laboratory of Computational Engineering, Systems Biology and Bioinformation Technology, Helsinki University of
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Subtle metabolic changes precede and accompany chronic vascular complications, which are the
primary causes of premature death in diabetes. To obtain amultimetabolite characterization of these
high-risk individuals, we measured proton nuclear magnetic resonance (1H NMR) data from the
serum of 613 patients with type I diabetes and a diverse spread of complications. We developed a
newmetabonomics framework to visualize and interpret the data and to link the metabolic profiles
to the underlying diagnostic and biochemical variables. Our results indicate complex interactions
between diabetic kidney disease, insulin resistance and the metabolic syndrome. We illustrate how
a single 1H NMR protocol is able to identify the polydiagnostic metabolite manifold of type I diabetes
and how its alterations translate to clinical phenotypes, clustering of micro- and macrovascular
complications, and mortality during several years of follow-up. This work demonstrates the diffuse
nature of complex vascular diseases and the limitations of single diagnostic biomarkers. However, it
also promises cost-effective solutions through high-throughput analytics and advanced computa-
tional methods, as applied here in a case that is representative of the real clinical situation.
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Introduction

Type I diabetes is caused by an autoimmune reaction against
the insulin-producing pancreatic b-cells and subsequent
disturbance of normal blood glucose metabolism. Insulin
replacement therapy cures the acute symptoms, but is not able
tomatch the natural response to rising or falling glucose levels.
This persistent metabolic imbalance is linked to high incidence
of vascular complications such as diabetic kidney disease
(DKD) (Finne et al, 2005), diabetic retinal disease (DRD) (Roy
et al, 2004) and macrovascular diseases (MVDs) (Libby et al,
2005), all of which are co-occurring in vulnerable patients
(Groop et al, 2005; Thorn et al, 2005; Ala-Korpela, 2007). The
diagnosis, risk assessment and treatment of these conditions
are currently determined by a number of biochemical and

clinical variables, although none of these are conclusive on its
own (Soedamah-Muthu et al, 2004; Stadler et al, 2006).
Furthermore, the simultaneous clustering of complications
and metabolic risk factors has not been studied by high-
throughput analytical techniques that could reveal the
multidimensional metabolic state of an individual more
effectively.
The standard differential diagnostics inmedicinemay not be

sufficient in detecting complex perturbations of biological
systems (Zenker et al, 2007). Conditions such as insulin
resistance and atherosclerosis stem from nonlinear interactive
pathways between the genes (Hakonarson et al, 2007), gene
expression (Sieberts and Schadt, 2007), metabolic environ-
ment (Goodacre, 2007) and the symbiotic microflora (Martin
et al, 2007). To pinpoint the nodes and their roles in the disease
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networks requires a large number of samples with multi-
dimensional quantitative data—a direct consequence of the
curse of dimensionality. The genome-wide association studies
have shown that this can be achieved at the DNA level
(Frayling, 2007; Wellcome Trust Case Control Consortium,
2007). However, for personalized risk assessment and treat-
ment the genetic approach is limited, as it does not take into
account the dynamic environment, unlike the metabonomics
approach (Nicholson and Wilson, 2003; Clayton et al, 2006),
which has gained popularity as analytical technologies
are evolving (Nicholson, 2006; Ala-Korpela, 2007; Salek
et al, 2007).
Diabetic complications pose a difficult challenge to public

health care, as populations grow older and life style becomes
more sedentary and energy-rich (Reunanen et al, 2000). For
this reason, we are aiming at new screening methods and
metabolic characterization tools to find the vulnerable patients
at an early stage when preventive treatment is still effective
(Tenenbaum et al, 2004; Gross et al, 2005). Mass spectrometry
and proton (1H) nuclear magnetic resonance (NMR) spectro-
scopy are the two key experimental methods in the area
of ‘global biochemistry’ (Fernie et al, 2004). 1H NMR, in
particular, is advantageous for screening, as it can efficiently
extract detailed molecular information on a large number of
metabolites in various biofluids (Tang et al, 2004; Beckonert
et al, 2007; Ala-Korpela, 2008). The earliest experiments with
plasma have already demonstrated this in type II diabetes
(Nicholson et al, 1984). Recently, we have shown that DKD can
be detected by 1HNMRof serum (Mäkinen et al, 2006) and that
the metabolic syndrome (MetS) can be distinguished by
multivariate methods and 1H NMR spectroscopy (Suna et al,
2007). A similar approach has been applied to cardiovascular
disease, but with limited success (Brindle et al, 2002;
Kirschenlohr et al, 2006). The metabolic changes in type II
diabetes have also been studied by chromatographic methods
(Yang et al, 2004; Wang et al, 2006). Animal models have
provided encouraging results and further justification for the
metabonomic NMR approach (Williams et al, 2005; Clayton
et al, 2006; Salek et al, 2007), but more experience from
human populations is needed (Griffin and Nicholls, 2006;
Ala-Korpela, 2007).
In this study, the emphasis is on the metabolic continuum

that underlies the slow and often elusive development of
chronic complications. We focus first on DKD due to its high
significance in the treatment and prognosis of diabetic patients
(Gross et al, 2005). Our main goal, however, is to extract a
metabolite manifold that highlights not only DKD, but also
other important clinical and biochemical characteristics and
their complex relationships (Fernie et al, 2004). The combina-
tion of 1H NMR of serum and metabonomic mapping provides
the necessary insight: neural network analysis and statistically
verified visualizations of both the spectroscopic and clinical
data will not only help decision making in clinical environ-
ment, but will also increase the knowledge of multifactorial
disease states that are difficult to pinpoint by reductionist
approaches (Sams-Dodd, 2005; Weckwerth and Morgenthal,
2005; Loscalzo et al, 2007). The new source of information can
then be used in personalized risk assessment as a cost-effective
high-throughput alternative to a collection of specific biomar-
ker assays (Lindon et al, 2006; Ala-Korpela, 2008).

Results

Molecular windows to metabolism

We obtained serum samples from the FinnDiane study to
measure two molecular windows for 613 patients with type I
diabetes. A typical 1H NMR spectrum of human serum is
characterized by broad resonances from the lipid molecules of
lipoprotein particles, such as the �CH3 group of triglycerides,
cholesterol compounds and phospholipids (Figure 1C and D).
This so-called lipoprotein lipids (LIPO) window is a complex
mixture of the aforementioned lipid signals, serum albumin
and albumin-bound fatty acid resonances across the aliphatic
region, and the less intense signals from smaller molecules
such as creatinine, lactate and glucose (Ala-Korpela, 1995,
2008).
To reveal the resonances from smaller molecules, the

spectrometer settings can be altered to suppress most of the
broad resonances while still enabling the detection of themore
mobile low molecular weight molecules (LMWM). The
LMWM window is dominated by the numerous glucose
resonances between 3.1 and 3.9 p.p.m., although some lipid
signals still remain (Figure 1B and E). The spectral shapes from
both windows share a common axis of chemical shift and are
superimposable, except for the intensity scaling constant. For
example, lactate creates a strong doublet signal around
1.28 p.p.m. in the LMWM window, but only small shapes on
top of the wider lipid and albumin resonances in the LIPO
window. On the other hand, most of the molecules with the
�CH3 group contribute to the prominent signal around
0.8 p.p.m. in the LIPO window, but only the more mobile
species can be detected in the LMWM window.

Spectral profile of type I diabetes

A self-organizing map (SOM) (Kohonen, 2000) was con-
structed from the 1H NMR data (Figure 1A). The SOM was the
result of reducing the 613 experimental spectra into 9� 9¼81
representative spectral models, each of which was assigned to
a unique hexagonal unit on themap grid. Subsequently, a best-
matching model was determined for each experiment, thus
each patient had a best-matching unit or a ‘place of residence’
on the map. Localized similarity is the fundamental idea
behind the SOM, that is, neighboring units or the patients
therein are more similar to each other than those from the
opposite sides of the map. In this case, similarity was defined
by the arithmetic multidimensional difference between the
two spectral models; thus, any two neighbors shared more
metabolic characteristics (their spectra looked the same) than
two randomly picked patients, on average.
As the SOM is analogous to a geographic map in all but the

way the patients’ coordinates are assigned, it is possible to use
ordinary demographic methods to visualize the properties of
patients in different metabolic neighborhoods (Supplementary
data 1). Here, we started by coloring the units based on the
percentage of DKD patients within a local population
(Figure 1A). The highest value of 70% can be seen on the
western edge of the map, on the unit at row 5 and column 1
(5,1). The unit at (2,9) near the northeast corner has the lowest
percentage of DKD (16%), and is located far from (5,1). In fact,
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when looking at the overall coloring, the DKD patients are
clustered on the western side, whereas the patients with fewer
complications are concentrated on the northeast corner of
the map.
The typical spectral profile of DKD was examined by

comparing the spectral models at (5,1) and (2,9) to see if any
of the metabolite resonances differed. Each of the spectral
plots, such as Figure 1C, consists of three components. First,
the meanmodel over all data is depicted as a solid black line to

serve as a constant reference to which the spectral models can
be compared. The second curve alongside the reference is the
unit-specific spectral model, which was split into orange or
blue segments depending onwhere themodel exceeded or was
less intense than the reference. As the first two curves are close
to each other in terms of absolute intensity, a third curve that
depicts the proportional differences is helpful in revealing any
significant changes in intensity. In Figure 1C for instance, the
third curvewas drawn below the two absolute intensity curves

Figure 1 1H NMR spectral profile of diabetic kidney disease. (A) The SOM of 613� 2 1H NMR spectra of serum, colored according to the percentage estimate of DKD
within a given map region. Each hexagonal map unit defines a specific model spectrum and a corresponding subset of patients, the spectra of which best match the
aforementioned model. (B) The low molecular weight metabolites (LMWM) model spectrum and (C) the lipoprotein lipid and albumin (LIPO) model spectrum for a patient
subset within the map unit with the lowest percentage of DKD. The colored curve segments indicate the current model, whereas the solid black curve indicates the mean
spectrum over all data, thus serving as a constant reference. The colored areas below the model spectra represent the proportional differences of the unit-specific model
and the mean model. (D) The LIPO model and (E) the LMWM model spectrum for patients within a map unit of the highest DKD percentage. An interactive presentation
of the model spectra is available in Supplementary data 3.
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and painted similarly to the unit-specific model. The lipopro-
tein lipid resonances at around 0.81, 1.23 and 1.95 p.p.m.
show reduced values from the mean, whereas the albumin
background is increased. In Figure 1E, the two creatinine
peaks at 2.98 and 3.99 p.p.m. are higher for the DKD region
(5,1). However, looking at just two map locations is not
enough for accurate interpretation; a more global perspective
is required.

Diabetic kidney disease, the metabolic syndrome
and mortality

Amajority of the patients in this study had either micro- (22%)
ormacroalbuminuria (37%), the spatial distributions of which
are revealed by class-specific colorings in Figure 2A and B. The
macroalbuminuric group (clinically diagnosed with DKD) is
concentrated on the western side of the map (P¼1.2�10�8),
whereas the diagnostically intermediate microalbuminuric
group does not form any statistically significant pattern
(P¼0.077). While the DKD status was determined by urine
albumin excretion, the map was constructed solely based on
the 1H NMR spectra of serum, thus illustrating the systemic
biological connection between the two biofluids.
All-cause mortality in Figure 2C (P¼0.00057) was estimated

based on 8.2±0.6 years of follow-up and scaled to the
percentage of deaths in a decade (number of deaths per 1000
patient years). As expected, there is a clear connection
between DKD and increased mortality, and the highest value
of 25% is observed at (7,1) close to the highest DKD
percentage at (5,1). Additional details are available in Figure
1 in Supplementary data 2.
TheMetS (NCEP, 2002; Eckel et al, 2005) represents a binary

classification according to a clinical scoring system (a score of
3 or more is considered positive) that combines several
components of insulin resistance and obesity (Figure 2D–H).
Patients with the lowest score 1 reside on the northern part of
the SOM with a 42% (P¼1.1�10�5) occupancy at (1,8), and
those with a score above 3 are tightly concentrated on the
southwestern corner, with hardly any overlap with the first
group (P¼1.8�10�8 for score 4, P¼1.3�10�7 for score 5).
The SOM colorings indicate strong associations between

DKD, mortality and the MetS, but with subtle differences. For
instance, the first two MetS categories split the normoalbumi-
nuric northeastern side, rather than spread evenly to mirror
the DKD group (Figure 2A, B, D and E). The highest percentage
of DKD at (5,1) does not coincide with the highest MetS scores
at (9,1). Interestingly, a history of macrovascular complica-
tions in these patients seem to be relatedmore to theMetS than
to DKD (Figure 2I), although the numbers are too small for
statistical significance (P¼0.035 for the MVD pattern). Finally,
the highest 10-year mortality of 25% is observed at (7,1) in
Figure 2C, where the MetS and DKD overlap the most.

Confounding factors and treatments

The colorings for age (mean±s.d. 40±11 years), type I
diabetes duration (27±10 years) and gender (311 males, 302
females) show only minor spatial clustering and weak
statistical significance (Figure 3A–C). Furthermore, the

observed patterns show little similarity to DKD, the MetS or
MVD in Figure 2, suggesting that the major chronological and
physiological determinants of risk do not confound the
biochemical characteristics.
Most of the patients were on medication or had undergone

laser treatment for DRD. Antihypertensive treatment
(P¼2.7�10�5) is most common (up to 75%) in those areas
on the western side of the map (Figure 3G), which have a high
percentage of DKD in Figure 2B and elevated blood pressure in
Figure 3D and E, as expected. Furthermore, the same areas
have a high proportion of DRD (P¼0.00027), although the
pattern is more widely dispersed on the southwestern half of
the SOM (Figure 3H). Lastly, patients with the highest MetS
scores have also the widest waist (94 cm) in Figure 3F and the
highest percentage (30%) of lipid-lowering treatment
(Figure 3I).

Biochemical backdrop of diabetic complications

To create a more comprehensive metabolic picture than that in
Figure 1, we colored the map according to estimates from
regression models and spectral features that quantify key
biochemical variables directly from the 1H NMR spectra
(Mäkinen et al, 2006). The previously used null hypothesis
of no dependence between the map and a target variable could

A B C

D E F

G H I

Figure 2 Statistical colorings of albuminuria, the MetS, MVD and mortality.
(A–C) Demographic properties of patients on the SOM that was constructed
from 613� 2 1H NMR spectra of serum. The three upper plots depict the
clustering of (A) microalbuminuria, (B) macroalbuminuria and (C) 10-year
mortality in patients with type I diabetes. The color of each hexagonal map unit
indicates the estimated proportion of cases with respect to the total number of
patients who reside on the unit in question. For mortality, the estimates were
normalized by follow-up time. (D–H) Five grades of the MetS according to the
NCEP ATP III recommendations and (I) the distribution of patients with a history
of macrovascular events. Empirical P-values for each plot as a whole are shown
below the colorings.
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not be used here, as both the map and the coloring were
derived from the spectra. The dynamic range of statistical
fluctuations was nevertheless estimated to determine a
suitable color scale (Supplementary data 1).
Triglyceride concentration is a part of theMetS definition, and

the highest unit-specific value (3.6mmol/l) can therefore be
seen at the southwest corner of the map, where also the MetS is
most severe (Figure 4A). Total serum cholesterol is only
partially linked to triglycerides, as it produces an ascending
north-south pattern on the SOM (Figure 4B). Nevertheless, the
highest value (6.0mmol/l) coincideswith that of triglycerides at
(1,9). HDL2 cholesterol exhibits a more complicated pattern
(Figure 4C), with the highest value (0.64mmol/l) located near
the southeast corner, and the lower values (0.41–0.47mmol/l)
located on the western side.
Creatinine singlets at 2.98 and 3.99 p.p.m. and urea around

5.68 p.p.m. have a strong association with DKD (Figure 2B)
and produce similar colorings of approximately doubled
values on the western side of the SOM as compared with the
eastern side (Figure 4D and E). Furthermore, lactate at 1.28
and 4.05 p.p.m. and acetate at 1.86 p.p.m. follow the same
trend (Figure 4G and H), but with patterns closer to the MetS.
Serum albumin is higher on the eastern half of the map
(Figure 4F), which was already evident in the typical spectral
model of DKD in Figure 1C and D.

The effect of the glucose resonances between 3.1 and
3.9 p.p.m. was suppressed when constructing the SOM, but
nevertheless the remaining doublet from a-glucose around
5.19 p.p.m. was enough to separate patients who had high
blood glucose at the time of sample collection (Figure 4I).
Although the daily variations are large in type I diabetic
patients, high glucose values do partially overlap with the
MetS and other complications on the southwestern half.

Validation by standard biochemistry

Standard non-NMR measurements of a number of metabolites
were also available for validating the NMR-derived results
with methodologically independent data (Table 1 in Supple-
mentary data 2). In addition, the metabolite manifold from
the spectra was supplemented with biomolecular data that
could not be detected by NMR to confirm biologically relevant
observations.
Figure 5A–C depicts the three most important lipid variables

(see also the NMR-derived colorings in Figure 4A–C), with
highly statistically significant patterns for triglycerides
(P¼3.1�10�19), total cholesterol (P¼2.1�10�13) and HDL2C
(P¼2.5�10�6). HDL3C (P¼4.3�10�6) has a pattern similar to
HDL2C in Figure 5F. The highest concentration of ApoB
(117mg/dl) coincides with the highest triglycerides and

A B C

D E F

G H I

Figure 4 Statistical colorings of 1H NMR estimates of biochemical variables.
(A–I) Quantitative estimates of biochemical variables based on the statistical
modeling of the 1H NMR spectra, and visualized on the SOM that was obtained
previously from the same data. Regression model estimates for (A) serum
triglyceride concentration, (B) cholesterol level, (C) HDL2 cholesterol and (D)
serum creatinine. The colors of the map units indicate the averaged estimates for
patients who reside in a given region. (E) Concentrations of serum urea were
obtained by direct peak integration around 5.68 p.p.m. and (E) albumin
concentration was estimated by parametric line fitting in the aliphatic region of the
LIPO window. (G) Lactate signal at 4.05 p.p.m. (H) acetate at 1.86 p.p.m. and
(I) glucose at 3.44 p.p.m. were quantified by peak integration.

A B C

D E F

G H I

Figure 3 Statistical colorings of confounding factors and treatments. (A–F)
Clinical characteristics of patients on the SOM of 1H NMR spectra. The colors of
the map units indicate the estimates for the average (A) age and (B) diabetes
duration within the patient subset on a particular map region. (C) The gender
distributions on the map units. The color of each hexagonal map unit indicates the
percentage of male gender with respect to the total number of patients that reside
on the unit in question. (D, E) Blood pressure and (F) waist circumference for the
patient subsets within each map unit. The percentages of (G) antihypertensive
treatment, (H) DRD and (I) lipid-lowering treatment were obtained as described
above.
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cholesterol in the southwest corner at (9,1) and appears to be
elevated if either of the two is higher than average
(P¼1.1�10�13 for ApoB).
Creatinine is easily detectable by 1H NMR as two singlets at

2.98 and 3.99 p.p.m; accordingly, the non-NMR measurement
in Figure 5D closely matches the NMR-derived creatinine
(and biologically correlated urea) in Figure 4D and
E (P¼9.2�10�7). The 24 h-urine albumin in Figure 5I is
indicative of persistent albuminuria by definition
(P¼4.6�10�10), and albuminuria is tightly linked to the
metabolite manifold from NMR, as was evident in Figure 2A
and B.
Patients in the southwest corner have significantly higher

weight-adjusted insulin doses (P¼0.00053), but, despite that,
the worst glycemic control, which is indicated by HbA1c of
9.7% (P¼2.9�10�8). Corresponding patterns were previously
observed for the MetS (Figure 2F–H) and NMR-derived lactate,
acetate and glucose (Figure 4G–I), which can be seen as an
indication of insulin resistance.

Summary of clinical and metabolic characteristics

In the final stage, wemergedmap units into larger districts and
collected the regional characteristics into tabular format to
create a summary of the metabolic characteristics (Figure 6;
Table 3 in Supplementary data 2). For instance, the southwest
district (Figure 6A) is populated by patients with high relative
risk due to DKD and the MetS (7.8 versus 2.0–2.1), compared

A B C

D E F

G H I

Figure 5 Validation of the biochemical accuracy of the 1H NMR data and neural
network analysis. (A–I) Measurements of clinical markers by standard (non-
NMR) biochemistry, visualized on the SOM of 1H NMR spectra. (E)
Apolipoprotein B-100, (F) HDL3 cholesterol, (G) insulin dose, (H) glycemic
control and (I) 24 h-urine albumin were included instead of those metabolites
from Figure 4 that were estimated by 1H NMR.

Figure 6 Summary of clinical and metabolic characteristics. (A–F) Statistics for a selection of non-NMR variables for patient groups defined by six districts on the
SOM. The map was constructed based on the 1H NMR spectra for 613 type I diabetic patients. The percentages of cases with respect to the total number of patients in a
given district and for the whole population (ALL) are listed for 10-year mortality (normalized by follow-up time), DKD, the MetS, MVD, DRD and male gender. Relative
risk of death (RR) was defined as the ratio of the observed mortality in type I diabetic patients against the entire Finnish population. The MetS was defined as present
if the score was three or more. Median values are listed for the continuous variables, with the full statistics available for the non-NMR data in Table 3 in Supplementary
data 2.
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with the districts in the north and northeast (Figure 6E and F).
Biochemically, these groups differ significantly: triglycerides
(2.8 versus 0.84mmol/l), cholesterol (5.8 versus 4.5–
4.9mmol/l), serum creatinine (116 versus 87–88 mmol/l)
and 24 h-urine albumin (356 versus 13–16mg) are high,
whereas HDL-subfractions are low in the MetS district.
Patients in the MetS corner have also poor glycemic control
(HbA1c 9.2 versus 8.2%) and larger waist circumference (94
versus 81–83 cm).
The northwest corner is characterized by high susceptibility

to microvascular complications, as DKD (58%) and DRD
(58%) are common but MetS (42%), MVD (10%) and 10-year
mortality (17%) are closer to average. Furthermore, there is a
notable difference in HDL2C when comparing the northwest
corner and the southeast corner of the SOM (0.45 versus
0.60mmol/l), which is also visible in Figure 4C. On the other
hand, total cholesterol is higher in the southeast (4.9 versus
5.7mmol/l), so the difference in the ratio of HDL2 to total
cholesterol is less pronounced.
The two districts with favorable phenotypes are similar if

complications alone are considered, but someminor biochem-
ical differences can be observed (Figure 6E and F). Although
both districts share relatively high HDL2C concentrations,
ApoA1, ApoB, HDL3C and total cholesterol are lower in the
northern district. The districts are also different with respect to
serum albumin (Figure 4F). Triglycerides and glycemic control
(HbA1c 8.2%) exhibit no clear differences, as was seen also in
the spectral estimates of triglycerides in Figure 4A.

Discussion

Diabetes is associated with increased incidence of vascular
complications and premature aging (Morrish et al, 2001;
Rönnback et al, 2005; Pambianco et al, 2006). Here, we
characterized the metabolic background of adverse clinical
phenotypes within this high-risk population by 1H NMR
spectroscopy of serum. Specifically, we were able to identify
differences and similarities in the biochemical patterns of
DKD, insulin resistance, DRD, macrovascular complications
and all-cause mortality in 613 type I diabetic patients.
The 1H NMR analyses were targeted at two molecular

windows simultaneously. The LIPO window carries informa-
tion particularly on lipoprotein lipids and albumin, whereas
the LMWMwindow contains signals from smaller metabolites
such as creatinine and glucose (Mäkinen et al, 2006; Ala-
Korpela, 2008). Lipoprotein levels are altered in type I diabetes
in the presence and during the development of complications
(Chaturvedi et al, 2001; Lyons et al, 2004; Thomas et al, 2006),
but they alone cannot capture all aspects of the diabetic
condition. It is therefore plausible that the inclusion of the
LMWMwindow as an integral part of the biochemical analysis
is crucial for polydiagnostic applications that are targeted at
several concurrent disease mechanisms (Kell, 2006).
The raw metabolite manifold obtained from the two

molecular windows was not usable as such, but multivariate
computational analysis was required to transform the spectral
data into an accessible form of information.We chose the SOM
(Kohonen, 2000; Suna et al, 2007) instead of linear decom-
positionmethods such as principal component analysis (PCA),

since the SOM algorithm preserves the spectral shapes and
summarizes the data via a small number of spectral models
that are directly relatable to individual samples (Figure 1). The
decompositions, on the other hand, are focused on the
variables and on the reduction of the data into abstract
multidimensional linear spaces that may not have a direct
connection to the observed NMR resonances.
PCA and partial least squares methods have been estab-

lished as the standard pattern recognition methods in the field
of metabonomics (Dieterle et al, 2006; Trygg et al, 2007).
However, the SOM analysis has been applied, for instance, in
spectroscopic classification problems (Beckonert et al, 2003;
Lavine et al, 2004; Suna et al, 2007), in molecular conforma-
tion analysis (Hyvönen et al, 2001) and in studies of gene–
metabolite interactions (Hirai et al, 2004). The last case is an
example of complementary application of both PCA and SOM.
Some studies have also compared SOM with other methods
(Mangiameli et al, 1996; Giraudel and Lek, 2001; Astel et al,
2007) and, in most cases, the use of SOM produced additional
insight compared with PCA (see also Supplementary data 1).
The ambiguity in model selection and the danger of

overfitting are the main drawbacks of neural network
algorithms (Lampinen and Kostiainen, 1999). Here, the
statistical significance of the observed patterns was addressed
from a practical point of view, with emphasis on the ability of
1H NMR to extract relevant metabolic information from a
serum sample. The question of overtraining was not relevant
in this context, as we were not using the SOM as a predictive
tool but included only the spectra as inputs. Thus, we were
able to integrate different sources of data in a user-friendly
fashion by stochastically normalized map colorings, without
giving up statistical reliability.
We chose not to perform supervised feature extraction or

selection before the SOM analysis. This may have led to
suboptimal predictive performance for a particular clinical
endpoint but, on the other hand, the results reflect the intrinsic
metabolic information content of the spectra as such, and the
complex dependencies between the various bodies of data. For
instance, we have previously shown that a linear regression
model with nonlinear feature extraction can indicate the
albumin excretion categories from the 1H NMR spectra of
serum (Mäkinen et al, 2006), but this model has less utility in
nondiabetic populations. The SOMpresented here, however, is
not methodologically dependent on albuminuria and thus
easier to relate to the general population.
Omitting explicit feature selection does not guarantee

optimal results, but other options would require detailed
methodological treatment that is not yet available, and might
complicate the interpretations of the original spectral shapes.
DKD, for instance, is a discrete classification based on one
biomarker (urine albumin), and while it makes a perfect test
case for analytical techniques (Mäkinen et al, 2006), a systems
biology approach to diabetic complications should not aim to
predict albuminuria, but to distinguish the multifactorial
disease states, even if not all of them are associated with overt
albuminuria (Caramori et al, 2006). Put differently, a
predictive model will only work in the clinical practice if the
phenotype to be predicted is accurate (Loscalzo et al, 2007).
Despite the shortcomings, albumin excretion is an excellent

indicator of progressing kidney damage after the early stages of
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the disease. Albuminuria starts to present itself within the first
15 years of diabetes (Gross et al, 2005; Caramori et al, 2006);
patients included in this work had a long diabetes duration (26
years on average), so the normoalbuminuric subgroup has a
low risk of ever developing DKD. Consequently, they represent
a generally healthier subset of diabetic patients, especially
when considering that low-grade albuminuria is associated
with macrovascular complications, even outside type I
diabetes (Gerstein et al, 2001). Still, normoalbuminuria does
not preclude the cardiovascular risk factors: a significant
portion of patients in the map region with dyslipidemia and
insulin resistance (Figure 6A) had normal (17%) or inter-
mediate (20%) albumin excretion as opposed to macroalbu-
minuria (63%).
The metabolic differences between most normo- and

macroalbuminuric (DKD) patients were evident in the 1H
NMR spectra of serum. DKD was associated with elevated
triglycerides, lower HDL cholesterol and decreased albumin in
the LIPO window. Other studies have also reported the
connection between albuminuria and triglycerides (Chaturve-
di et al, 2001; Jenkins et al, 2003; Thomas et al, 2006), but the
exact role of HDL metabolism remains unclear. Serum
creatinine and urea are two waste products that are normally
excreted by the kidneys and, accordingly, the LMWMwindow
revealed elevated values for the macroalbuminuric group,
although none of the patients had end-stage renal disease.
Crucially, the microalbuminuric patients did not clearly
identify with either the low-risk or high-risk regions of the
SOM, again highlighting the limited usefulness of any single
biomarker in complex disease environments (Caramori et al,
2000).
The MetS and DKD are strongly associated in the Finnish

type I diabetic population (Thorn et al, 2005). Our results from
the metabonomic analysis were similar: the SOM regions with
patients that have a detectable loss in kidney function (i.e.,
elevated creatinine and urea, decreased serum albumin)
overlapped with insulin resistance and related problems in
glucose metabolism (dyslipidemia, high insulin dose, high
HbA1c, elevated lactate and acetate and high fasting glucose)
(Krentz et al, 1991; Lovejoy et al, 1992; Avogaro et al, 1996;
Choi et al, 2002). Interestingly, the neighborhood with the
most severe insulin resistance did not coincide with the
highest values of creatinine and urea, which suggests that
there is a subtle systematic difference between the two clinical
conditions. Furthermore, the highest mortality was observed
on the intersection of the two defects. Unfortunately, the data
set size in this study was insufficient for any definitive
conclusions, but we have made similar observations with the
non-NMR data for the full FinnDiane population (Mäkinen
et al, in preparation), so these results nevertheless support a
multifactorial approach to the study of pathophysiology
(Loscalzo et al, 2007).
The discrepancy between the MetS and DKD could not be

explained by nonbiochemical factors. For instance, although
lipid treatment was most common in the MetS neighborhood,
this group of patients still had the highest triglyceride
concentration. This suggests that DKDwith lower triglycerides
is not a product of lipid-lowering treatment alone. In contrast,
the highest percentage of antihypertensive treatment coin-
cided with the highest blood pressure and DKD, but not with

the MetS, which in turn suggests that the MetS with
lower albumin excretion is not just a product of
decreased albuminuria due to blood pressure medication
(Thomas and Atkins, 2006). Furthermore, there was
little regional gender difference in the MetS-DKD half of
the SOM, so the wide waist circumference in the MetS
neighborhood did not represent a gender bias. Hence, our
results did not match some of the previous findings on
statistical gender groupings in 1H NMR experiments of plasma
(Kirschenlohr et al, 2006).
Macrovascular events are the primary targets of interven-

tion, as they are themost common cause of premature death in
type I diabetic patients (Libby et al, 2005; Stadler et al, 2006).
In this respect, the difference between insulin resistance and
kidney function becomes significant; the SOM neighborhood
with the highest percentage of MVD was also the one with the
strongest insulin resistance and the highestMetS scores, which
agrees well with previous studies (Sierra-Johnson et al, 2006).
The result is only suggestive, as the numbers were low and we
had only cross-sectional data on MVD available, but this
finding nevertheless demonstrates the sensitivity of the
metabonomics approach to MVD vulnerability, as opposed to
the albuminuria classification alone. Undoubtedly, triglyceride
concentration is the most significant serum biomarker (Davis
et al, 2007; Pambianco et al, 2007), and its role may be even
further emphasized here, as triglycerides produce pronounced
1H NMR resonances.
DRD was the most common (51%) complication among the

study population. Map regions with DKD or insulin resistance
hallmarks had the highest percentages, but DRD did not
specifically associate with either of the two. The connection to
mortality was less obvious due to the large number of DRD
cases, which agrees with previous observations (Torffvit et al,
2005).
Low concentration of HDL2 cholesterol was the common,

albeit not exclusive, denominator for all complications, which
suggests that HDL2 has a protective effect, or is a marker of a
favorable phenotype with respect to both micro- and macro-
vascular complications (Cutri et al, 2006). This is in contrast to
many observations regarding type I diabetes (Chaturvedi et al,
2001; Jenkins et al, 2003; Thomas et al, 2006), but the
disconnect may be due to the statistical models that were used
in these studies. There is a negative correlation between HDL
cholesterol and serum triglycerides, so any linear model that
includes both the two is likely to emphasize one at the expense
of the other. Furthermore, men and women have different
concentrations, so gender bias is likely to influence the results.
To resolve the controversy, studies that use modern multi-
variate pattern recognition techniques in addition to the
classical medical statistics should be performed on large
population-based cohorts.
The biological heterogeneity of diabetic complications make

the borderline between health and disease ambiguous, as is
the case with many other slow pathophysiological processes.
Our work illustrates this fundamental diagnostic challenge:
DKD, DRD, the MetS and MVD shared much of the same
biochemical basis, but nevertheless did not conclusively
define each other. Even though the patients in this study were
carefully selected to represent clinically relevant phenotypes,
the metabolic landscape remained diffuse.
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This work is, to our knowledge, the first metabonomics
study on premature death and vascular complications in a
large human cohort. We used only serum to characterize the
patients, and yet the high-risk metabolic features were easily
observable. This is an encouraging result with respect to
general applicability as, unlike type I diabetes, urine albumin
(or any other single biomarker) does not have an equally
critical role in type II diabetes, let alone in the nondiabetic
population. Furthermore, our application of 1H NMR metabo-
nomics and statistical visualizations may improve the tracking
of patients’ progress in the diabetic disease continuum in a
way not attainable by traditional approaches. Hence, it may
become possible to re-route the multimetabolite path of a
vulnerable patient away from adverse clinical endpoints
and towards a more favorable phenotype before it is too late
(Ala-Korpela et al, 2006).

Materials and methods

Study population

Patients with type I diabetes were recruited by the Finnish Diabetic
Nephropathy Study (FinnDiane), which is a nationwide multicenter
effort to identify genetic and clinical risk factors for DKD. The study
protocol was in accordance with the Declaration of Helsinki and
approved by the local ethics committee in each of the participating
health care centers. Diagnostic criteria for type I diabetes included age
of onset below 35, the transition to permanent insulin treatmentwithin
a year from onset and C-peptide negativity.

Data on medication, cardiovascular status and diabetic complica-
tions were registered by a standardized questionnaire, which
was completed by the patient’s attending physician according to
the medical file. Death certificates were obtained from the national
registry maintained by the Population Register Centre of Finland.
The average follow-up time was 8.2±0.6 years (4972 patient years
in total).

The classification of renal status was made centrally according to
urinary albumin excretion rate (AER) in at least two out of three
successive overnight urine samples. Absence of kidney disease
was defined as normoalbuminuria (AERo20mg/min), while the pre-
sence of overt kidney disease was defined as macroalbuminuria
(AERX200mg/min). The intermediary range is referred simply as
microalbuminuria (20mg/minpAERo200mg/min). Albumin from
24h-urine samples was also available, and it was used as a
biochemical variable in parallel with the longitudinal records of
albuminuria.

The MetS scores were calculated according to the NCEP ATP III
recommendations (NCEP, 2002), with every type I diabetic patient
having a base score of 1 for hyperglycemia (Table 2 in Supplementary
data 2). DRD was defined present if a patient had undergone laser
eye treatment. MVD was defined as a pooled composite of coronary
heart disease, acute myocardial infarction, stroke and peripheral
vascular disease. The events were pooled to have more cases for the
statistical analyses. Of the 54 cases, 40 had coronary heart disease,
24 had acute myocardial infarction, 12 had undergone coronary
bypass, 15 had cerebral stroke and 17 had undergone peripheral
vascular bypass.

Patients for the 1H NMR experiments were chosen based on the
renal status. First, a random subset of macroalbuminuric patients was
selected from the FinnDiane clinical databasewith preference for those
individuals with genetic and clinical information already available.
Next, sex- and age-matched peers were chosen from the normo- and
microalbuminuric group, with preference for normoalbuminuria and
availability of information. In total, 613 patients were included, of
which 251 (41%) were normoalbuminuric, 137 (22%) had micro-
albuminuria and 225 (37%) hadmacroalbuminuria. Patients with end-
stage renal disease or kidney transplant were excluded. The study set
does not reflect the population-based cross-section, except within the
macroalbuminuric group.

1H NMR spectroscopy
1H NMR data from serum samples at 371C were recorded on a Bruker
AVANCE spectrometer with a field strength of 500.13MHz. The
reference substance (sodium 3-trimethylsilyl[2,2,3,3-d4]propionate
(TSP) 40mmol/l, MnSO4 0.6mmol/l in 99.8% D2O) was placed
coaxially into the NMR sample container (o.d. 5mm, contains 430ml of
serum) in a separate tube (o.d. 1.7mm, supported by a Teflon adapter).
This double-tube system was chosen to avoid mixing of the sample
fluid and reference substance, which would make the absolute
metabolite quantification less reliable (Ala-Korpela, 1995, 2008;
Mäkinen et al, 2006).

The 1H NMR experiments were targeted at two different molecular
windows: LIPO and LMWM. For the LIPO spectra, 128 transients were
collected with a 901 flip angle, a 6.2 s acquisition time and a 0.1 s
relaxation delay. The LMWM data were collected with a standard one-
dimensional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with
a 325ms T2-filter and a fixed 400ms echo delay to eliminate diffusion
and J-modulation effects. Forty-eight transients were collected after 16
dummy scans with a 6.2 s acquisition time and an 8.7 s relaxation
delay. Water suppression was not used. The free induction decays
(FID) with 65 536 data points were zero-filled and multiplied by an
exponential window function with a 1.0Hz line-broadening for the
LIPO spectra and 0.5Hz line-broadening for the LMWM spectra. The
preprocessing of the FIDs and subsequent Fourier transformations
were performed on the PERCH software platform (PERCH Solutions
Ltd, Kuopio, Finland).

Metabolite intensities in each spectrumwere scaled according to the
area of the respective TSP reference signal at 0 p.p.m.. The TSP area
was obtained by first subtracting the linear baseline between�0.1 and
0.1 p.p.m., and then integrating over the remainder. In the LMWM
window, the effects of the water peak around 4.6 p.p.m. were removed
by fitting a Lorenzian tail on the aliphatic side and a piece-wise
polynomial curve on the aromatic side, and then subtracting the tails.
Furthermore, a minor piece-wise linear correction was applied in both
windows, mainly affecting the region between 3 and 5 p.p.m.. Peaks in
the LMWM spectra were aligned by first estimating the shift offsets at
selected locations, then linearly interpolating the offsets where direct
peak detection was difficult and finally re-mapping the frequency axis
according to the estimated shift offsets. The same correction was
performed also for the LIPO spectra, although the effects were small
due to wider line shapes. All preprocessing was performed in the
Matlab programming environment (The MathWorks Inc., Natick, MA,
USA) by using the statistical toolbox and in-house scripts.

Self-organizing map and statistical analysis

Before constructing the SOM, the spectra were truncated to
0.3–3.3 p.p.m. (LIPO) and 0.7–5.8 p.p.m. (LMWM), and the chemical
shift resolution was reduced to 0.003 p.p.m. (LIPO) and 0.001 p.p.m.
(LMWM). Data points between 4.2 and 5.0 p.p.m. were omitted and
the intensities between 3.22 and 3.88 p.p.m. were given only 0.1%
weight in the SOM algorithm to attenuate the effect of glucose. The
respective intensity units for the two molecular windows were
adjusted such that the total variance of the data points within the
LIPO window was equal to that in the LMWM window. This was
done to ensure that both windows would have comparable effect to
the SOM structure while preserving the relative intensities between
individual experiments.

We chose a 9� 9 hexagonal sheet of map units with a Gaussian
neighborhood function for the analysis (7.6 samples per unit). The
SOMwas initialized based on the two first principal components of the
input data and finished by the batch-training algorithm, with a 3.4%
topological error.

After the positions of the study subjects on the SOMwere computed,
the map was colored according to the demographic properties (i.e.,
clinical and biochemical variables) within different parts of the SOM
(Supplementary data 1). To verify statistical significance, regional
variability for the colorings was estimated by first computing the
squared deviations from the global average for eachmap unit, and then
adding these unit-specific values to obtain a single descriptive statistic.
Put differently, the ‘bumpiness’ of a coloring was expressed as one
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numerical value. Some bumps will occur by change alone, and to
estimate the expected null distribution, the target variable (DKD status
for instance) was shuffled randomly several times, and at each round,
the descriptive statistic was recomputed. The probability of getting the
observed statistic (or a more extreme value) from the random
distribution determined the statistical significance P. The null
distributions from the permutation analysis were also the basis of
the color scale in each figure so that categorical and continuous
variables, possibly with some data missing, can be compared visually
while maintaining the statistical interpretation.

Mortality in Figure 2Cwas estimated by first computing the coloring
for the percentage of deaths observed on each map unit, and then
normalizing these values by the average unit-specific follow-up time in
decades. Note that this is equivalent to the number of deaths in 1000
patient years. Only patients that had not died (91%) were used for the
follow-up time estimation to avoid bias due to deaths. The unadjusted
event percentages and follow-up times are available in Figure 1 in
Supplementary data 2. The discrepancy between Figures 2C and 6A
(max 25 versus 26%) stems from different formulations: the former
was obtained from the smoothed map estimates for the number of
deaths and follow-up period, whereas the latter was obtained from
point estimates within the resident patient subgroup. Relative risk for
early death in Figure 6was obtained as the ratio of observed deaths and
the mortality in the corresponding age segments of the entire Finnish
population within the follow-up period (data from Statistics Finland).

In addition to clinical variables, numerous quantities were
estimated computationally from the spectral data. Easily distinguish-
able peaks in the LMWMwindow such as urea around 5.68 p.p.m. and
acetate at 1.86 p.p.m. were quantified by direct peak integration. The
wide baseline signal from serum albumin was estimated by fitting a
polynomial curve at selected locations in the LIPO window and
computing the respective curve area. Lastly, semilinear regression
modeling was applied to quantities that were also available via non-
NMR methods (Mäkinen et al, 2006). All analyses were performed
using the SOM Toolbox 2.0 for the Matlab environment (URL: http://
www.cis.hut.fi/projects/somtoolbox/), and in-house scripts for sub-
sequent quantification, map coloring and permutation analyses.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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