16 research outputs found

    Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning

    Get PDF
    Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv−1 day−1 (usual temperature) to 0 mm3 indiv−1 day−1 when individuals were exposed to high temperature regimes (i.e.above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Response of Benthic Foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal)

    Get PDF
    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to metals enrichment.CNPq [401803/2010-4]; [PEst-OE/CTE/UI4035/2014]info:eu-repo/semantics/publishedVersio

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Assessing behavioural traits of benthic foraminifera: implications for sediment mixing

    No full text
    International audienceThe assessment of behavioural traits of marine organisms is increasingly recognized as a key issue to understand their role in ecosystem processes, such as bioturbation and nutrient cycling. The movement ability of intertidal foraminifera suggest that they may have a role, yet to be quantified, in benthic-pelagic coupling through their movement on the sediment, at the sediment-water interface and within the sediment. In this context, we investigated the behavioural traits of 5 benthic foraminiferal species typical of European temperate mudflats under standardized trophic light and temperature conditions. Behavioural traits related to motion of Ammonia tepida, Haynesina germanica, Cribroelphidium williamsoni, Miliammina fusca and Quinqueloculina seminula species were assessed through their travelled distance, velocity, tortuosity of the path, position in the sediment and activity index. By analogy with macrofauna bioturbation functional groups, we describe the studied foraminifera as biodiffusors-species with 3 subgroups defined according to their vertical position in the sediment. C. williamsoni belongs to the epifaunal-biodiffusors group while A. tepida and H. germanica belongs to surficial-biodiffusors. Finally, the species Q. seminula and M. fusca are considered as gallery-biodiffusors species. Our results further suggest that features such as velocity, activity and tortuosity may mediate sediment-mixing intensity. Therefore, Q. seminula, H. germanica and C. williamsoni which are the most active species, would have larger effect than the less active A. tepida and M. fusca on particles reworking rates. Taken together, our results suggest that benthic foraminifera may play an underestimated role in bioturbation processes

    Relationship between substrate, physico-chemical parameters and foraminiferal tests in the Doñana National Park, a Biosphere Reserve in SW Spain

    No full text
    A multidisciplinar analysis of sediments collected in diferent environments of the Doñana National Park (Guadalquivir estuary, SW Spain) provides an overview of the textural, mineralogical and physico-chemical parameters that control the distribution of benthic foraminiferal tests in this Biosphere Reserve. These microorganisms are absent in the fne quartzitic sands that constitute the substrate of temporary ponds with brief hydroperiods located in the dune systems and spits, as well as in other ponds with low conductivities or hypersaline conditions located in the inner marshlands or near the Guadalquivir river banks. Dead benthic foraminifera are mainly found on phyllosilicate-rich, silty-clayey substrates. The taphonomic analysis of the main species (Ammonia tepida, Haynesina germanica, Trochammina infata, Entzia macrescens) points to its deposit in situ. Cluster analysis permits to delimitate six foraminiferal assemblages. Cluster II (A. tepida+H. germanica) is the dominant assemblage in the central ponds and the margins of the main channels, while cluster IV (T. infata+E. macrescens) is restricted to some ponds located on the high marsh and cluster VI (Ammonia beccarii+Quinqueloculina spp.) is abundant on external beaches. Tidal fuxes cause the transport of these last marine benthic species and some plaktonic forms both to the inner areas of the estuary and to these beaches.info:eu-repo/semantics/publishedVersio

    Disentangling natural vs. anthropogenic induced environmental variability during the Holocene: Marambaia Cove, SW sector of the Sepetiba Bay (SE Brazil)

    No full text
    corecore