34 research outputs found

    Developments in modelling of backward erosion piping

    Get PDF
    One of the failure mechanisms that can affect the safety of a dyke or another water-retaining structure is backward erosion piping, a phenomenon that results in the formation of shallow pipes at the interface of a sandyor silty foundation and a cohesive cover layer. Themodels available for predicting the critical head at which the pipe progresses to the upstreamside have been validated and adapted on the basis of experiments with two-dimensional (2D) configurations. However, the experimental base for backward erosion in three-dimensional (3D) configurations in which the flow concentrates towards one point, a situation that is commonly encountered in the field, is limited. This paper presents additional 3D configuration experiments at two scales with a range of sand types. The critical gradients, the formed pipes and the erosion mechanism were analysed for the available experiments, indicating that the erosion mechanism is more complex than previously assumed, as both erosion at the tip of the pipe (primary erosion) and in the pipe (secondary erosion) are relevant. In addition, a 3D configuration was found to result in significantly lower critical gradients than those predicted by an accepted calculation model calibrated on the basis of 2D experiments, a finding that is essential for the application of the model in the field

    Variation in neurosurgical management of traumatic brain injury: A survey in 68 centers participating in the CENTER-TBI study

    Get PDF
    Background Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care

    Investigation of the backward erosion mechanism in small scale experiments

    No full text
    Currently, the most advanced prediction model for backward erosion piping is the two-dimensional Sellmeijer model that relates the equilibrium of forces on the grains at the pipe bottom to the pipe flow and ground water flow, based on mainly theoretical formulae. Yet the suitability of theoretical formulae for pipe flow and erosion under these specific conditions has not been verified experimentally. To understand and validate the erosion mechanism at micro-scale and to model the hydraulic conditions in and around the pipe in a 3D situation, the characteristics of the pipes and the erosion in the pipes have been investigated in small-scale laboratory experiments. The experiments indicate that the pipe depth and the pipe gradient remain the same during lengthening. The results serve as input for 3D groundwater flow calculations to obtain a better understanding of the erosion mechanism. The combined numerical and experimental results indicate that it is likely that the erosion at the pipe tip is triggered by loosening of sand from the pipe tip and walls as a result of water inflow rather than scour at the pipe bottom

    Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    No full text
    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items

    Gender medicine in corneal transplantation: influence of sex mismatch on rejection episodes and graft survival in a prospective cohort of patients

    No full text
    To evaluate the effect of donor-to-recipient sex mismatched (male donor corneas to female recipients) on the incidence of rejection episodes and failures up to 1 year after corneal transplantation. Prospective observational cohort study, with donor corneas randomly assigned and surgeons blind to the sex of donor. A unique eye bank retrieved and selected the donor corneas transplanted in 4 ophthalmic units in patients with clinical indication for primary or repeated keratoplasty for optical reasons, perforating or lamellar, either anterior or posterior. Rejection episode defined as any reversible or irreversible endothelial, epithelial or stromal sign, with or without development of corneal edema, and graft failure as a permanently cloudy graft or a regraft for any reason detected or acknowledged during a postoperative ophthalmic visit at any time up to 1 year after surgery were recorded.156 (28.6%) patients resulted donor-to-recipient gender mismatched for H-Y antigen (male donor to female recipient). During the 12 months follow-up, 83 (14.7%, 95% CI 12.0-17.9) grafts showed at least 1 rejection episode and 17 (3.2%, 95% CI 2.0-5.0) failed after immune rejection, among 54 (9.6%, 95% CI 7.4-12.3) grafts failed for all causes. No significant differences between matched and mismatched patients were found for cumulative incidence of both rejection episodes (15.2% and 13.5%) and graft failures following rejection (3.2% and 2.6%), respectively. Multivariable analyses showed that H-Y matching either is not a predictive factor for rejection or graft failure nor seems to influence incidence of failures on respect to patient's risk category. The lack of influence of donor-to-recipient mismatched on the rate of rejections and graft failures resulting from this study do not support the adoption of donor-recipient matching in the allocation of corneas for transplantation

    Transformation of odor representations in target areas of the olfactory bulb.

    No full text
    The brain generates coherent perceptions of objects from elementary sensory inputs. To examine how higher-order representations of smells arise from the activation of discrete combinations of glomeruli, we analyzed transformations of activity patterns between the zebrafish olfactory bulb and two of its telencephalic targets, Vv and Dp. Vv is subpallial whereas Dp is the homolog of olfactory cortex. Both areas lack an obvious topographic organization but perform complementary computations. Responses to different odors and their mixtures indicate that Vv neurons pool convergent inputs, resulting in broadened tuning curves and overlapping odor representations. Neuronal circuits in Dp, in contrast, produce a mixture of excitatory and inhibitory synaptic inputs to each neuron that controls action potential firing in an odor-dependent manner. This mechanism can extract information about combinations of molecular features from ensembles of active and inactive mitral cells, suggesting that pattern processing in Dp establishes representations of odor objects
    corecore