78 research outputs found

    Age-Related Attenuation of Dominant Hand Superiority

    Get PDF
    The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities

    Discrete and Effortful Imagined Movements Do Not Specifically Activate the Autonomic Nervous System

    Get PDF
    International audienceBACKGROUND: The autonomic nervous system (ANS) is activated in parallel with the motor system during cyclical and effortful imagined actions. However, it is not clear whether the ANS is activated during motor imagery of discrete movements and whether this activation is specific to the movement being imagined. Here, we explored these topics by studying the baroreflex control of the cardiovascular system. METHODOLOGY/PRINCIPAL FINDINGS: Arterial pressure and heart rate were recorded in ten subjects who executed or imagined trunk or leg movements against gravity. Trunk and leg movements result in different physiological reactions (orthostatic hypotension phenomenon) when they are executed. Interestingly, ANS activation significantly, but similarly, increased during imagined trunk and leg movements. Furthermore, we did not observe any physiological modulation during a control mental-arithmetic task or during motor imagery of effortless movements (horizontal wrist displacements). CONCLUSIONS/SIGNIFICANCE: We concluded that ANS activation during motor imagery is general and not specific and physiologically prepares the organism for the upcoming effortful action

    Priming with a Recombinant Pantothenate Auxotroph of Mycobacterium bovis BCG and Boosting with MVA Elicits HIV-1 Gag Specific CD8+ T Cells

    Get PDF
    A safe and effective HIV vaccine is required to significantly reduce the number of people becoming infected with HIV each year. In this study wild type Mycobacterium bovis BCG Pasteur and an attenuated pantothenate auxotroph strain (BCGΔpanCD) that is safe in SCID mice, have been compared as vaccine vectors for HIV-1 subtype C Gag. Genetically stable vaccines BCG[pHS400] (BCG-Gag) and BCGΔpanCD[pHS400] (BCGpan-Gag) were generated using the Pasteur strain of BCG, and a panothenate auxotroph of Pasteur respectively. Stability was achieved by the use of a codon optimised gag gene and deletion of the hsp60-lysA promoter-gene cassette from the episomal vector pCB119. In this vector expression of gag is driven by the mtrA promoter and the Gag protein is fused to the Mycobacterium tuberculosis 19 kDa signal sequence. Both BCG-Gag and BCGpan-Gag primed the immune system of BALB/c mice for a boost with a recombinant modified vaccinia virus Ankara expressing Gag (MVA-Gag). After the boost high frequencies of predominantly Gag-specific CD8+ T cells were detected when BCGpan-Gag was the prime in contrast to induction of predominantly Gag-specific CD4+ T cells when priming with BCG-Gag. The differing Gag-specific T-cell phenotype elicited by the prime-boost regimens may be related to the reduced inflammation observed with the pantothenate auxotroph strain compared to the parent strain. These features make BCGpan-Gag a more desirable HIV vaccine candidate than BCG-Gag. Although no Gag-specific cells could be detected after vaccination of BALB/c mice with either recombinant BCG vaccine alone, BCGpan-Gag protected mice against a surrogate vaccinia virus challenge

    High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria

    Get PDF
    Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1–10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples

    Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption

    Get PDF
    Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type.https://www.nature.com/articles/s41598-020-63769-

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/

    Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p
    corecore