57 research outputs found

    A SURVEY REGARDING THE NEWEST SEEDLINGS PLANTING TECHNOLOGIES THAT CAN BE USED IN AGROFORESTY, LANDSCAPE ECOLOGY AND FOREST REGENERATION FIELDS

    Get PDF
    Nowadays the seedlings planting technologies are design to raise mechanization performance on forestry and pomiculture works. Their impact is manly on soil remediation, lowering the surface and depth erosion degree, capitalization of rainwater, lowering the dust pollution and natural calamity risk and the rehabilitation of inland flora. In this paper will be presented some of the most performant planting technologies, which can be used in the environmental management process that assures high establishment rate. In some cases, the ecological benefits can occur after a shorter period of time reducing considerably the calamity risks, encouraged the inland flora, forest and degraded the site restauration, but also landscape ecology.Â

    CONSIDERATIONS REGARDING THE IMPORTANCE OF ARTICHOKE CROP IN ORDER TO CAPITALIZE IT AS BIOMASS

    Get PDF
    In this paper is presented a study in that are synthesized aspects concerning the extraordinary potential which it has the crop artichoke for sustainable capitalization as: energy source, medicinal plant, but also row material in pharmacological industry to extract active compounds from cardboard

    A novel myelin P0–specific T cell receptor transgenic mouse develops a fulminant autoimmune peripheral neuropathy

    Get PDF
    Autoimmune-prone nonobese diabetic mice deficient for B7-2 spontaneously develop an autoimmune peripheral neuropathy mediated by inflammatory CD4+ T cells that is reminiscent of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. To determine the etiology of this disease, CD4+ T cell hybridomas were generated from inflamed tissue–derived CD4+ T cells. A majority of T cell hybridomas were specific for myelin protein 0 (P0), which was the principal target of autoantibody responses targeting nerve proteins. To determine whether P0-specific T cell responses were sufficient to mediate disease, we generated a novel myelin P0–specific T cell receptor transgenic (POT) mouse. POT T cells were not tolerized or deleted during thymic development and proliferated in response to P0 in vitro. Importantly, when bred onto a recombination activating gene knockout background, POT mice developed a fulminant form of peripheral neuropathy that affected all mice by weaning age and led to their premature death by 3–5 wk of age. This abrupt disease was associated with the production of interferon γ by P0-specific T cells and a lack of CD4+ Foxp3+ regulatory T cells. Collectively, our data suggest that myelin P0 is a major autoantigen in autoimmune peripheral neuropathy

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    CSL–MAML-dependent Notch1 signaling controls T lineage–specific IL-7Rα gene expression in early human thymopoiesis and leukemia

    Get PDF
    Notch1 activation is essential for T-lineage specification of lymphomyeloid progenitors seeding the thymus. Progression along the T cell lineage further requires cooperative signaling provided by the interleukin 7 receptor (IL-7R), but the molecular mechanisms responsible for the dynamic and lineage-specific regulation of IL-7R during thymopoiesis are unknown. We show that active Notch1 binds to a conserved CSL-binding site in the human IL7R gene promoter and critically regulates IL7R transcription and IL-7R α chain (IL-7Rα) expression via the CSL–MAML complex. Defective Notch1 signaling selectively impaired IL-7Rα expression in T-lineage cells, but not B-lineage cells, and resulted in a compromised expansion of early human developing thymocytes, which was rescued upon ectopic IL-7Rα expression. The pathological implications of these findings are demonstrated by the regulation of IL-7Rα expression downstream of Notch1 in T cell leukemias. Thus, Notch1 controls early T cell development, in part by regulating the stage- and lineage-specific expression of IL-7Rα

    Developmental gene networks: a triathlon on the course to T cell identity

    Full text link

    Choline chloride based ionic liquids for the electrodeposition of metals and alloys

    No full text
    Recently it has been shown the possibility of formation of ionic liquids from eutectic mixtures of quaternary ammonium salt such as choline chloride (2-hidroxy-ethyl-trimethyl ammonium chloride) with a hydrogen bond donor species such as amides, glycols or carboxylic acids. These media have been further used to electrodeposit a large range of metals and alloys including Zn and Zn alloys, Cr, Sn, Cu and Ag. In this work, we report about the electrodeposition of metals, e.g. nickel and alloys, from choline chloride based electrolytes. To evaluate the resistance against corrosion, several accelerated corrosion tests have been performed and results are discussed
    corecore