25 research outputs found

    Global warming will affect the maximum potential abundance of boreal plant species

    Get PDF
    Forecasting the impact of future global warming on biodiversity requires understanding how temperature limits the distribution of species. Here we rely on Liebig's Law of Minimum to estimate the effect of temperature on the maximum potential abundance that a species can attain at a certain location. We develop 95%-quantile regressions to model the influence of effective temperature sum on the maximum potential abundance of 25 common understory plant species of Finland, along 868 nationwide plots sampled in 1985. Fifteen of these species showed a significant response to temperature sum that was consistent in temperatura-only models and in all-predictors models, which also included cumulative precipitation, soil texture, soil fertility, tree species and stand maturity as predictors. For species with significant and consistent responses to temperature, we forecasted potential shifts in abundance for the period 2041-2070 under the IPCC A1B emission scenario using temperatura-only models. We predict major potential changes in abundance and average northward distribution shifts of 6-8 km y r-1. Our results emphasize inter-specific differences in the impact of global warming on the understory layer of boreal forests. Species in all functional groups from dwarf shrubs, herbs and grasses to bryophytes and lichens showed significant responses to temperature, while temperature did not limit the abundance of 10 species. We discuss the interest of modelling the 'maximum potential abundance' to deal with the uncertainty in the predictions of realized abundances associated to the effect of environmental factors not accounted for and to dispersal limitations of species, among others. We believe this concept has a promising and unexplored potential to forecast the impact of specific drivers of global change under future scenarios.Comunidad de MadridUniversidad de AlcaláAcademy of Finlan

    Occurrence data may provide unreliable thermal preferences and breadth of species

    Get PDF
    Accurate information on the thermal preference and specialization of species is needed to understand and predict species geographical range size and vulnerability to climate change. Here we estimate the position and breadth of species within thermal gradients based on the shape of the response curve of species abundance to temperature. The objective of the study is to compare the measurements of this approach based on abundance data with those of the classical approach using species’ occurrence data. The relationship between species’ relative abundance and minimum winter temperature of 106 bird species wintering in the Iberian Peninsula is modeled at 100 Km2 resolution with quadratic logistic regressions. From these models we calculated the preferred temperature of species as the temperature at which the abundance is maximized, and the thermal breadth of species as the relative area under the temperature-abundance curve. We also estimated the thermal preferences and breadth of species as the average temperature and temperature range of the UTM cells in which the species are present. The abundance-temperature response curves reveal that birds prefer higher temperatures to overwinter, and are more thermally selective, than is measured by the classical approach. Moreover, response curves detect a higher inter-specific variability in both thermal preferences and thermal breadth of species. As occurrence data gives the same weight to cells with one or many individuals, the average temperature of the cells in which the species is present roughly reflects the average temperature in the region of study and not the environmental preferences of species.This paper is a contribution to projects CGL2008-02211/BOS and CGL2011-28177/BOS of the Spanish Ministry of Education and Science.Peer reviewe

    Más allá de la temperatura promedio: distribución de aves invernantes a múltiples escalas

    Get PDF
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Ecología. Fecha de lectura: 03-12-2013To disentangle the subtleties of the relationship between the thermal environment and the distribution of wintering birds, at multiple spatial scales. Specifically, to analyze the relative influence of temperature on species distributions, its interaction with various thermal and non-thermal factors, and the context-dependence of these relationships (i.e., species, season and geographical location). Location Iberian Peninsula and Guadarrama Mountain range (central Spain). Methods I use observational and experimental field approaches to control for habitat structure, topography, food abundance and predation risk, from forest patches to landscape, regional and peninsular scales. Fieldwork is carried out with woodland passerines inhabiting mountain oakwoods of Quercus pyrenaica, and subtle variations in temperature and wind are precisely measured with data loggers. Main results and conclusions Wintering birds respond to natural variations in temperature at multiple scales, selecting the warmest forest patches to forage and the warmest mountain areas and peninsular regions to overwinter. However, temperature per se accounts for a relatively small proportion of the variation in species distribution patterns. Indeed, a sudden extreme drop in temperature is not enough to alter species abundances, or to promote their redistribution to minimize wind chill. Other nonthermal environmental factors like vegetation structure, predation risk and availability of predictable food resources, seem to be more deterministic in driving winter species distribution than direct measurements of temperature. On the other hand, the influence of the thermal environment goes far beyond average temperature: minimum night temperature, incident sun radiation and altitude related with snow cover are key drivers of species distributions. The relative relevance of all these factors depends on the ecological scenario, varying across species, seasons and geographical locations. I conclude that if we disregard other environmental effects, we will overestimate the influence of temperature on species abundance and underestimate the plasticity of these to respond to temperature changes. Applications and prospects Fine-grained approaches, based on direct measures of the study organisms and carried out through precise local measurements of environmental variables, are needed to understand the functional mechanisms driving species distribution patterns at wider scales. At all scales, we need to control for other environmental factors when predicting the responses of birds to temperature, under either current or future scenarios of global warming. Otherwise, we are at risk of generating strongly biased predictions that will inflate the magnitude of climate change effects.Desentrañar los pormenores de la relación entre el ambiente térmico y la distribución de aves invernantes a múltiples escalas espaciales. En concreto, analizar la influencia relativa de la temperatura en la distribución de especies, su interacción con varios factores térmicos y no térmicos, y cómo tales relaciones dependen del contexto ecológico (i.e., especies involucradas, estación del año y localización geográfica). Localización Península Ibérica y Sierra de Guadarrama (centro de España). Métodos He utilizado tanto aproximaciones observacionales como experimentales de campo para controlar el efecto de la estructura del hábitat, la topografía, la abundancia de alimento y el riesgo de depredación, en escalas que varían desde el parche hasta el paisaje forestal, la región de Guadarrama y la Península Ibérica. El trabajo de campo se ha llevado a cabo con paseriformes forestales de robledales montanos de Quercus pyrenaica, y las variaciones de temperatura y viento se han medido de forma precisa y local con registradores de datos. Resultados y conclusiones principales Las aves invernantes responden a variaciones naturales en la temperatura a múltiples escalas, seleccionando los parches forestales más cálidos para forrajear y las áreas de la sierra y de la península más cálidas para pasar el invierno. Sin embargo, la temperatura “per se” explica una proporción relativamente pequeña de la variación en los patrones de distribución de especies. De hecho, una caída extrema y repentina de la temperatura no es suficiente para alterar la abundancia de las especies, ni para promover su redistribución hacia las áreas con una sensación térmica más alta. Otros factores ambientales como la estructura de la vegetación, el riesgo de depredación y la disponibilidad de fuentes predecibles de alimento, son más deterministas en la distribución invernal de especies que las medidas directas de temperatura. Por otro lado, la influencia del ambiente térmico va más allá de la temperatura promedio: la temperatura mínima nocturna, la radiación solar incidente y la altitud relacionada con la cobertura de nieve son determinantes clave en la distribución de las especies. La importancia relativa de todos estos factores depende del escenario ecológico, variando a través de las especies, las estaciones del año y de las localizaciones geográficas. Mi conclusión es que si no consideramos otros efectos ambientales, estaremos sobreestimando la influencia de la temperatura en la abundancia de especies y subestimando la plasticidad de estas para responder a cambios de temperatura. Aplicaciones y perspectivas Las aproximaciones de detalle, basadas en medidas directas de los organismos de estudio y en medidas locales precisas de las variables ambientales, son necesarias para entender los mecanismos funcionales que dirigen los patrones de distribución de especies a escalas mayores. A cualquier escala, necesitamos controlar la influencia de otros factores ambientales sobre la respuesta de las aves a la temperatura, bajo escenarios tanto actuales como de cambio global futuros. En caso contrario, corremos el riesgo de generar predicciones fuertemente sesgadas que inflen la magnitud de los efectos del cambio climático

    Más allá de la temperatura promedio: distribución de aves invernantes a múltiples escalas

    Get PDF
    208 páginas y 7 capítulos.- Tesis Doctoral defendida en la Universidad Autónoma de Madrid el 3-12-2013. Calificada de Sobresaliente cum laude[EN] Aim To disentangle the subtleties of the relationship between the thermal environment and the distribution of wintering birds, at multiple spatial scales. Specifically, to analyze the relative influence of temperature on species distributions, its interaction with various thermal and non-thermal factors, and the context-dependence of these relationships (i.e., species, season and geographical location). Location Iberian Peninsula and Guadarrama Mountain range (central Spain). Methods I use observational and experimental field approaches to control for habitat structure, topography, food abundance and predation risk, from forest patches to landscape, regional and peninsular scales. Fieldwork is carried out with woodland passerines inhabiting mountain oakwoods of Quercus pyrenaica, and subtle variations in temperature and wind are precisely measured with data loggers. Main results and conclusions Wintering birds respond to natural variations in temperature at multiple scales, selecting the warmest forest patches to forage and the warmest mountain areas and peninsular regions to overwinter. However, temperature per se accounts for a relatively small proportion of the variation in species distribution patterns. Indeed, a sudden extreme drop in temperature is not enough to alter species abundances, or to promote their general redistribution to minimize wind chill. Other non-thermal environmental factors like vegetation structure, predation risk and availability of predictable food resources, seem to be more deterministic in driving winter species distribution than direct measurements of temperature. On the other hand, the influence of the thermal environment goes far beyond average temperature: minimum night temperature, incident sun radiation and altitude related with snow cover are key drivers of species distributions. The relative relevance of all these factors depends on the ecological scenario, varying across species, seasons and geographical locations. I conclude that if we disregard other environmental effects, we will overestimate the influence of temperature on species abundance and underestimate the plasticity of these to respond to temperature changes. Applications and prospects Fine-grained approaches, based on direct measures of the study organisms and carried out through precise local measurements of environmental variables, are needed to understand the functional mechanisms driving species distribution patterns at wider scales. At all scales, we need to control for other environmental factors when predicting the responses of birds to temperature, under either current or future scenarios of global warming. Otherwise, we are at risk of generating strongly biased predictions that will inflate the magnitude of climate change effects.[ES] Objetivo: Desentrañar los pormenores de la relación entre el ambiente térmico y la distribución de aves invernantes a múltiples escalas espaciales. En concreto, analizar la influencia relativa de la temperatura en la distribución de especies, su interacción con varios factores térmicos y no térmicos, y cómo tales relaciones dependen del contexto ecológico (i.e., especies involucradas, estación del año y localización geográfica). Localización Península Ibérica y Sierra de Guadarrama (centro de España). Métodos: He utilizado tanto aproximaciones observacionales como experimentales de campo para controlar el efecto de la estructura del hábitat, la topografía, la abundancia de alimento y el riesgo de depredación, en escalas que varían desde el parche hasta el paisaje forestal, la región de Guadarrama y la Península Ibérica. El trabajo de campo se ha llevado a cabo con paseriformes forestales de robledales montanos de Quercus pyrenaica, y las variaciones de temperatura y viento se han medido de forma precisa y local con registradores de datos. Resultados y conclusiones principales: Las aves invernantes responden a variaciones naturales en la temperatura a múltiples escalas, seleccionando los parches forestales más cálidos para forrajear y las áreas de la sierra y de la península más cálidas para pasar el invierno. Sin embargo, la temperatura “per se” explica una proporción relativamente pequeña de la variación en los patrones de distribución de especies. De hecho, una caída extrema y repentina de la temperatura no es suficiente para alterar la abundancia de las especies, ni para promover su redistribución general hacia las áreas con una sensación térmica más alta. Otros factores ambientales como la estructura de la vegetación, el riesgo de depredación y la disponibilidad de fuentes predecibles de alimento, son más deterministas en la distribución invernal de especies que las medidas directas de temperatura. Por otro lado, la influencia del ambiente térmico va más allá de la temperatura promedio: la temperatura mínima nocturna, la radiación solar incidente y la altitud relacionada con la cobertura de nieve son determinantes clave en la distribución de las especies. La importancia relativa de todos estos factores depende del escenario ecológico, variando a través de las especies, las estaciones del año y de las localizaciones geográficas. Mi conclusión es que si no consideramos otros efectos ambientales, estaremos sobreestimando la influencia de la temperatura en la abundancia de especies y subestimando la plasticidad de estas para responder a cambios de temperatura. Aplicaciones y perspectivas: Las aproximaciones de detalle, basadas en medidas directas de los organismos de estudio y en medidas locales precisas de las variables ambientales, son necesarias para entender los mecanismos funcionales que dirigen los patrones de distribución de especies a escalas mayores. A cualquier escala, necesitamos controlar la influencia de otros factores ambientales sobre la respuesta de las aves a la temperatura, bajo escenarios tanto actuales como de cambio global futuros. En caso contrario, corremos el riesgo de generar predicciones fuertemente sesgadas que inflen la magnitud de los efectos del cambio climático.This thesis has been supported by a Formación de Personal Investigador grant (FPI; BES- 2009-029386) associated to the project CGL2008-02211/BOS of the Spanish Ministry of Economía y Competitividad.Peer reviewe

    Foraging patch selection in winter: A balance between predation risk and thermoregulation benefit

    Get PDF
    In winter, foraging activity is intended to optimize food search while minimizing both thermoregulation costs and predation risk. Here we quantify the relative importance of thermoregulation and predation in foraging patch selection of woodland birds wintering in a Mediterranean montane forest. Specifically, we account for thermoregulation benefits related to temperature, and predation risk associated with both illumination of the feeding patch and distance to the nearest refuge provided by vegetation. We measured the amount of time that 38 marked individual birds belonging to five small passerine species spent foraging at artificial feeders. Feeders were located in forest patches that vary in distance to protective cover and exposure to sun radiation; temperature and illumination were registered locally by data loggers. Our results support the influence of both thermoregulation benefits and predation costs on feeding patch choice. The influence of distance to refuge (negative relationship) was nearly three times higher than that of temperature (positive relationship) in determining total foraging time spent at a patch. Light intensity had a negligible and no significant effect. This pattern was generalizable among species and individuals within species, and highlights the preponderance of latent predation risk over thermoregulation benefits on foraging decisions of birds wintering in temperate Mediterranean forests. © 2013 Villén-Pérez et al.This paper was funded by project CGL2008-02211/BOS of the Spanish Ministry of Educación y Ciencia.Peer Reviewe

    Acoustic species distribution models (aSDMs): A framework to forecast shifts in calling behaviour under climate change

    Get PDF
    Species distribution models (SDMs) are a key tool for biogeography and climate change research, although current approaches have some significant drawbacks. The use of species occurrence constrains predictions of correlative models, while there is a general lack of eco-physiological data to develop mechanistic models. Passive acoustic monitoring is an emerging technique in ecology that may help to overcome these limitations. By remotely tracking animal behaviour across species geographical ranges, researchers can estimate the climatic breadth of species activity and provide a baseline for refined predictive models. However, such integrative approach still remains to be developed. Here, we propose the following: (a) a general and transferable method to build acoustic SDMs, a novel tool combining acoustic and biogeographical information, (b) a detailed comparison with standard correlative and mechanistic models, (c) a step-by-step guide to develop aSDMs and (d) a study case to assess their effectiveness and illustrate model outputs, using a year-round monitoring of calling behaviour of the Iberian tree frog at the thermal extremes of its distribution range. This method aims at forecasting changes in environmental suitability for acoustic communication, a key and climate-dependent behaviour for a wide variety of animal taxa. aSDMs identified strong associations between calling behaviour and local environmental conditions and showed robust and consistent predictive performance using two alternative models (regression and boundary). Furthermore, these models better captured climatic variation than correlative models as they use observations at higher temporal resolution. These results support aSDMs as efficient tools to model calling behaviour under future climate scenarios. The proposed approach offers a promising basis to explore the capacity of vocal species to deal with climate change, supported by an innovative integration of two disciplines: bioacoustics and biogeography. aSMDs are grounded on ecologically realistic conditions and provide spatially and temporally explicit predictions on calling behaviour, with direct implications in reproduction and survival. This enables to precisely forecast shifts in breeding phenology, geographic distribution or species persistence. Our study demonstrates how acoustic monitoring may represent an increasingly valuable tool for climate change researchConsejería de Educación e Investigación, Grant/Award Number: 2020-T1/AMB20636 and 2017-T2/AMB-6035; European Commission, Grant/Award Number: EAVESTROP-661408; Ministerio de Economía, Industria y Competitividad, Grant/Award Number: CGL2017-88764-

    La percepción del impacto de la maternidad y la paternidad en la carrera científica en Ciencias de la Vida en España

    Get PDF
    La menor representación de las mujeres respecto a los hombres en etapas avanzadas de la carrera científica se ha relacionado con diversos factores, como el tiempo dedicado a la maternidad. Para conocer la percepción del impacto de la maternidad y la paternidad en el desarrollo de la carrera científica en Ciencias de la Vida en España, se ha realizado una encuesta a 324 investigadores. La mayoría de las personas investigadoras perciben que la crianza tiene un efecto negativo en el desarrollo de su carrera, especialmente en la de las mujeres y cuando los hijos son pequeños. En consonancia, las mujeres reducen el tiempo dedicado al trabajo para cuidar de los hijos más que los hombres. Además, más de la mitad de las personas investigadoras declara haber modificado sus planes de natalidad por su carrera científica. Estas personas proponen medidas para la conciliación familiar y laboral que podrían ayudar a mejorar su panorama.Women and men’s representation in advanced stages of the scientific career is unbalanced, a fact that has been related with different factors, namely the time dedicated to motherhood. The perception of the impact of motherhood and fatherhood on the development of the scientific career in Life Sciences in Spain was evaluated through a survey carried out with 324 researchers. Most researchers perceive that parenting has a negative effect on their careers, particularly on women and when the children are young. Female researchers with children have displaced more of their time dedicated to work for activities related to childcare than their male colleagues. Moreover, more than half of the researchers specify that they have modified their plans regarding maternity / paternity due to their careers. Researchers propose several mitigation strategies to improve the balance between parenting and scientific career.Ministerio de Ciencia e InnovaciónComunidad de MadridUniversidad de Alcal

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Preferred temperature and thermal breadth of birds wintering in peninsular Spain: The limited effect of temperature on species distribution

    Get PDF
    Background. The availability of environmental energy, as measured by temperature, is expected to limit the abundance and distribution of endotherms wintering at temperate latitudes. A prediction of this hypothesis is that birds should attain their highest abundances in warmer areas. However, there may be a spatial mismatch between species preferred habitats and species preferred temperatures, so some species might end-up wintering in sub-optimal thermal environments. Methods. We model the influence of minimum winter temperature on the relative abundance of 106 terrestrial bird species wintering in peninsular Spain, at 10 ×10 km resolution, using 95%-quantile regressions. We analyze general trends across species on the shape of the response curves, the environmental preferred temperature (at which the species abundance is maximized), the mean temperature in the area of distribution and the thermal breadth (area under the abundance-temperature curve). Results. Temperature explains a low proportion of variation in abundance. The most significant effect is on limiting the maximum potential abundance of species. Considering this upper-limit response, there is a large interspecific variability on the thermal preferences and specialization of species. Overall, there is a preponderance of positive relationships between species abundance and temperature; on average, species attain their maximum abundances in areas 1.9 °C warmer than the average temperature available in peninsular Spain. The mean temperature in the area of distribution is lower than the thermal preferences of the species. Discussion. Many species prefer the warmest areas to overwinter, which suggests that temperature imposes important restrictions to birds wintering in the Iberian Peninsula. However, one third of species overwinter in locations colder than their thermal preferences, probably reflecting the interaction between habitat and thermal requirements. There is a high inter-specific variation in the versatility of species using the available thermal space, and the limited effect of temperature highlights the role of other environmental factors determining species abundance.Spanish Ministry of Education and Science: BES-2009-029386.Peer Reviewe

    Wintering forest birds roost in areas of higher sun radiation

    No full text
    We analyze environmental determinants of roost site selection by tree gleaning passerines wintering in a Mediterranean montane oakwood at a craggy area of high variation in altitude and hill-shading pattern. We hypothesize that in temperate latitudes of cold winter climate, birds should spend the night in areas of low altitudes, higher temperatures, and higher solar radiation in order to minimize thermoregulation costs during resting time and to improve foraging conditions just before and after roosting. We study night occupation of woodland locations by the presence of feces in 159 wooden nest boxes (i.e., under identical controlled roosting situations). We employ GIS methods to quantify solar radiation at each location surrounding the nest boxes and data loggers to measure air temperature in the field. Birds prefer to roost in forest patches with higher solar radiation, where the period of light available for foraging is extended and thermoregulation costs during daytime are minimized. They also selected woodland patches with taller trees, a pattern consistent with their foraging preferences for trunks and branches. Other environmental variables played a negligible role in determining the selection of roost sites. Here, we show, for the first time, the importance of sun radiation determining where to spend the night in wintering birds and call attention on considering the thermal space in forest management. Forest management should preserve woodland patches with taller trees more exposed to solar radiation to enhance winter habitat suitability for birds in these Mediterranean oakwoods. © 2013 Springer-Verlag Berlin Heidelberg.This paper was funded by project CGL2008-02211/BOS of the Spanish Ministry of Educación y Ciencia.Peer Reviewe
    corecore