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Abstract
1. Species distribution models (SDMs) are a key tool for biogeography and climate 

change research, although current approaches have some significant drawbacks. 
The use of species occurrence constrains predictions of correlative models, while 
there is a general lack of eco- physiological data to develop mechanistic models. 
Passive acoustic monitoring is an emerging technique in ecology that may help 
to overcome these limitations. By remotely tracking animal behaviour across 
species geographical ranges, researchers can estimate the climatic breadth of 
species activity and provide a baseline for refined predictive models. However, 
such integrative approach still remains to be developed.

2. Here, we propose the following: (a) a general and transferable method to build 
acoustic SDMs, a novel tool combining acoustic and biogeographical informa-
tion, (b) a detailed comparison with standard correlative and mechanistic mod-
els, (c) a step- by- step guide to develop aSDMs and (d) a study case to assess 
their effectiveness and illustrate model outputs, using a year- round monitoring 
of calling behaviour of the Iberian tree frog at the thermal extremes of its dis-
tribution range. This method aims at forecasting changes in environmental suit-
ability for acoustic communication, a key and climate- dependent behaviour for 
a wide variety of animal taxa.

3. aSDMs identified strong associations between calling behaviour and local en-
vironmental conditions and showed robust and consistent predictive perfor-
mance using two alternative models (regression and boundary). Furthermore, 
these models better captured climatic variation than correlative models as they 
use observations at higher temporal resolution. These results support aSDMs as 
efficient tools to model calling behaviour under future climate scenarios.
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1  |  INTRODUC TION

Climate change is a critical challenge for biodiversity, as it imposes 
shifts in geographical ranges, phenological patterns, species inter-
actions and might eventually results in species extinction (Dawson 
et al., 2011; Pecl et al., 2017). To identify proper conservation actions, 
it is paramount to assess climate change impacts on biodiversity, and 
the use of monitoring and predictive techniques plays a major role in 
this urgent task. Species distribution models (SDMs) are widely applied 
to forecast climate change– driven shifts in species range, by follow-
ing two alternative strategies: correlative and mechanistic approaches 
(Kearney et al., 2010). Here we propose a new development based on 
the integration of bioacoustics and biogeography that provides a ro-
bust and cost- effective tool to expand SDMs, leveraging the advances 
in passive acoustic monitoring (PAM), while addressing some of the 
drawbacks of these modelling methods.

Whereas the correlative approach combines readily available 
biogeographical and environmental data to model species distribu-
tions (Rodríguez- Rodríguez et al., 2020), the mechanistic one offers a 
process- based approach to better examine the potential response of 
species to changing environments (Peterson, 2011). Biogeographical 
data are a key, but incomplete proxy for environmental suitability and 
species persistence, especially when considering presence- only data 
(Villén- Pérez & Carrascal, 2015). For instance, source- sink dynamics 
may yield presence records in unsuitable habitats (sinks), supported 
by individual dispersal from high quality habitats (sources), which re-
veals the limitation of presence records to predict habitat suitability 
(Schurr et al., 2012). The mechanistic approach has been proposed to 
overcome some of these shortcomings, allowing to forecast species 
response to current and novel environmental conditions. However, 
this requires species- specific physiological data and complex biophys-
ical models (i.e. based on individual- level flows of mass and energy; 
Kearney et al., 2010) that are only available for a limited subset of 
species, a shortage of eco- physiological information constraining the 
broad application of these mechanistic models (Bovo et al., 2018).

Passive acoustic monitoring is an emerging technique to remotely 
track animal communities and ecosystems (Gibb et al., 2019; Sethi 
et al., 2018; Sugai et al., 2019) that increases our capacity to assess 

biodiversity in time and space. Using acoustic sensors, PAM captures 
environmental sounds to characterize multiple aspects of communities 
and species (Gibb et al., 2019; Sueur & Farina, 2015). Animal sounds are 
species- specific and mediate vital behaviours, such as courtship, feed-
ing or territory display (Bradbury & Vehrencamp, 1998; Fletcher, 2007; 
Gerhardt & Huber, 2002), hence they not only inform us about species 
presence or abundance but also about their behavioural and physiolog-
ical status (Gibb et al., 2019). As sound production is highly dependent 
on environmental conditions (Krause & Farina, 2016; Llusia, Márquez, 
Beltrán, Moreira, et al., 2013), besides it can be used as an indicator of 
species persistence under climate change.

In combination with niche modelling, these novel techniques may 
assist researchers in providing a basis for the development of new 
species distribution models: aSDMs. Recent studies have shown how 
acoustic monitoring can be used to estimate climatic breadth and en-
vironmental suitability for calling behaviour (Bonnefond et al., 2020; 
Llusia, Márquez, Beltrán, Benítez, et al., 2013), laying the foundations 
for aSDMs. These estimates constitute a novel source, not only of 
eco- physiological information to model species distribution, but also 
behavioural and phenological information, improving our tools to pre-
dict past, present and future environmental suitability for vocal ani-
mals. aSDMs are suited for a wide range of taxa that rely on sounds 
for communication and orientation such as anuran amphibians, birds, 
mammals or some invertebrates (Gibb et al., 2019). Therefore, niche 
modelling based on acoustic monitoring may help to overcome some 
of the current shortfalls of the correlative and mechanistic approaches 
(e.g. limitations of presence- only data, shortage of eco- physiological 
information), while providing accurate and meaningful predictions 
under global change scenarios.

Although the potential contribution of PAM in biogeography and 
climate change research have recently been advocated (e.g. Krause & 
Farina, 2016; Lomolino et al., 2015; Sueur et al., 2019), its practical ap-
plication still demands well- defined methodological frameworks and 
robust modelling tools. The development of aSDMs attempts to fill this 
gap and promote new research directions. Thus, some of the primary 
questions to resolve are as follows: (i) What are the data requirements 
for such an approach? (ii) How to select study species and monitoring 
sites? (iii) What types of analyses are needed to retrieve acoustic data? 

4. The proposed approach offers a promising basis to explore the capacity of vocal 
species to deal with climate change, supported by an innovative integration of 
two disciplines: bioacoustics and biogeography. aSMDs are grounded on eco-
logically realistic conditions and provide spatially and temporally explicit predic-
tions on calling behaviour, with direct implications in reproduction and survival. 
This enables to precisely forecast shifts in breeding phenology, geographic dis-
tribution or species persistence. Our study demonstrates how acoustic monitor-
ing may represent an increasingly valuable tool for climate change research.

K E Y W O R D S
animal behaviour, bioacoustics, biogeography, climate change, ecoacoustics, ecological niche, 
environmental suitability, passive acoustic monitoring
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(iv) How to link acoustic, environmental and biogeographical data to 
predict climate- driven shifts in species distribution and phenology?

In this paper, we address all these points and outline a general 
and transferable methodological framework to build novel SDMs 
based on the integration of bioacoustics and biogeography. We 
provide a detailed step- by- step description to build aSDMs, a study 
case to evaluate their effectiveness and illustrate model outputs, as 
well as datasets and R code to implement this new method. Finally, 
we compare the key features of aSDMs to correlative and mechanis-
tic approaches, and discuss their benefits, limitations, and prospects.

2  |  ACOUSTIC SPECIES DISTRIBUTION 
MODEL S:  METHODOLOGIC AL FR AME WORK

The acoustic SDM combines acoustic and biogeographic information 
aiming at assessing the environmental suitability for calling behaviour 
and forecasting both geographical and phenological shifts under cli-
mate change scenarios. Our framework relies on acoustic monitoring 
and local environmental variables to build models that estimate calling 
probability and provide spatially and temporally explicit predictions 
of behavioural responses to climate change, including climate- driven 
shifts in breeding phenology, geographic distribution and species per-
sistence. This framework is composed of nine steps (Figure 1) and has 
been developed to be modular and customizable to specific require-
ments of species and questions of interest. In this section, we provide 
methodological details and recommendations for study designs.

2.1  |  Step 1. Selection of the study species

These new SDMs are designed for species using acoustic commu-
nication, such as grasshoppers, crickets, katydids, cicadas, teleost 
fish, anuran amphibians, crocodiles, geckos, turtles, tortoise, ter-
restrial and marine mammals, passerines and other birds (Bradbury 
& Vehrencamp, 1998). Data collection, modelling and interpretation 
of predictions are based on animal sound production, and therefore 
two initial criteria should guide the selection of the study species: 
(i) species emitting acoustic signals related to vital functions such 
as breeding, feeding or navigation, so that signalling activity can 
be monitored and aSDMs forecast climate- driven changes in those 
behaviours and (ii) taxa using species- specific and described sig-
nals that can be recorded, detected and correctly identified. As this 
method benefits from prior information on the species distribution 
(e.g. to locate populations at climatic extremes), an additional crite-
rion is to select (iii) taxa with well- established taxonomic status and 
well- documented geographic ranges.

2.2  |  Step 2. Selection of the monitoring sites

aSDMs apply a cross- site comparison (Weltzin et al., 2003) to ex-
amine the species response to climate, by monitoring calling activity 

along environmental gradients. The location of the study sites should 
be chosen to represent as many distinct climatic or environmental 
conditions as possible, while remaining feasible. Designing spatial 
coverage requires to address trade- offs between affordability and 
data comprehensiveness (Sugai et al., 2020). One way to achieve 
this is to target sites located at the extremes of an environmental 
gradient (e.g. cold vs. warm extremes; dry vs. wet extremes, or sites 
with distinct multi- dimensional parameters identified with a cluster-
ing approach), hence covering most of the range of climatic variation 
experienced by the study species to approach the environmental 
breadth of their calling behaviour. It has been demonstrated that ex-
amining the performance of the study species at contrasting climatic 
conditions can contribute substantially to assess the influence of 
climate on calling behaviour, even when monitoring only two popu-
lations (Bonnefond et al., 2020; Llusia, Márquez, Beltrán, Benítez, 
et al., 2013; Llusia, Márquez, Beltrán, Moreira, et al., 2013).

Overall, we recommend to follow five major criteria when se-
lecting monitoring sites: (i) sites located at the climatic extremes of 
the species ranges, ideally within the 10% highest/lowest values 
(Llusia, Márquez, Beltrán, Benítez, et al., 2013); (ii) sites where the 
study species is common to ensure that enough signalling events are 
collected; (iii) sites with relatively low sound pressure levels from 
geophony (non- biological sounds from natural origins; for example, 
strong winds, or turbulent rivers) to facilitate signal detection and 
identification (Ulloa et al., 2021); (iv) sites with relatively low an-
thropogenic disturbances (including noise caused by humans such 
as road traffic noise) to prevent alterations of the species behaviour 
(Brumm, 2013), and (v) relatively accessible sites to facilitate setting 
up and maintenance of the equipment.

To meet these standards and properly select monitoring sites 
for aSDMs, we suggest a detailed preliminary analysis. First, a list of 
candidate sites should be selected based on species distribution and 
climate information. We propose a simple procedure implemented 
in R to identify sites at climatic extremes (see codeS1_finding- 
extremes.Rmd; Desjonquères et al., 2022), using the Worldclim bio-
climatic database (e.g. BIO1, BIO5, BIO12 and BIO16) and species 
geographical information (e.g. polygons) provided by the IUCN Red 
List. Finally, literature revision, expert pannels and/or pilot fieldwork 
can be conducted to choose monitoring sites among the initial can-
didates according to the other criteria (i.e. species abundance, noise, 
disturbance and accessibility).

2.3  |  Step 3. Collection of acoustic recordings

Passive acoustic monitoring is the most reliable and affordable 
means to collect long- term observational acoustic data (Andreassen 
et al., 2014; Buxton et al., 2016; Carriço et al., 2019; Melo et al., 2021). 
This non- invasive technique relies on installing autonomous record-
ing units to sample all the sounds emanating from an environment 
(Aide et al., 2013; Desjonquères et al., 2020; Gibb et al., 2019; Obrist 
et al., 2010), including the calling activity of the focal species. We 
recommend to extend the monitoring program for long periods (e.g. 
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at least a whole breeding season) to cover as much as possible the 
variability in species activity and weather conditions at the sites. To 
design the adequate sampling protocol, species calling behaviour, 
equipment autonomy and budget should be carefully considered, 
following available guidelines (e.g. Sugai et al., 2020).

2.4  |  Step 4. Detection of acoustic activity

The extensive time- series of audio recordings obtained with PAM 
should be scrutinized to determine the species activity patterns. 
The presence– absence datasets are the easiest way to character-
ize calling activity and build aSDMs. Alternatively, the intensity of 
species activity can be determined with a relative abundance index 
such as the Vocal Activity Rate (Pérez- Granados et al., 2019) or the 
Amphibian Calling Index (Weir & Mossman, 2005), which quantify 
the level of acoustic activity (e.g. in the ACI, from 0 when no calls, up 
to 3 when full chorus). These datasets can be achieved by manual, 

semi- automated or automated analysis, each approach having pros 
and cons. Manual identification usually shows higher accuracy but is 
highly labour intensive (Goyette et al., 2011), making this approach 
often unfeasible due to the enormous amount of data provided by 
long- term PAM. Semi- automated and automated signal recogni-
tion can be implemented using techniques such as machine learn-
ing (Ovaskainen et al., 2018; Pérez- Granados et al., 2019; Stowell 
et al., 2019) or acoustic indices (Indraswari et al., 2020), although this 
requires annotated datasets and complex programming. With the in-
creasing availability of labelled species- specific data in sound librar-
ies, for instance the Macaulay library (https://www.macau layli brary.
org/) or Xeno- canto (https://xeno- canto.org/), and the development 
of open- source software (Araya- Salas & Smith- Vidaurre, 2016; Ulloa 
et al., 2021), it is expected that the implementation of these models 
will become easier in coming years. In semi- automated recognition, 
the identified sequences are typically validated by experts to re-
duce false- positive rates and improve the accuracy of the detection. 
Regardless of the analytical approach, it is important to ensure the 

F I G U R E  1  Schematic summary of the proposed framework to develop acoustic species distribution models (aSDMs) in nine steps: (a) 
passive acoustic monitoring (PAM) allows to track species activity along environmental gradients or at climatic extremes (steps 1– 3); (b) 
acoustic analysis identifies species activity patterns over time (step 4); (c) the response and predictor variables are estimated by different 
approaches (steps 5– 6), as calling probability over a given period (regression model) or as the upper and lower limits of environmental 
variables at which calling is observed (boundary model); (d) modelling fits the relationship between climate and behaviour and cross- 
validation assesses model predictive performance (steps 7– 8); (e) models are applied to forecast spatio- temporal variation in environmental 
suitability for calling behaviour (step 9). The regression model relates calling probability and environmental variables with a generalized 
linear mixed models, while the boundary model estimates the percentage of overlap between the range of environmental conditions at a 
given period and the estimated species climatic breadth of calling behaviour.
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highest possible performance in species detection to reduce model 
uncertainty as the resulting datasets will then provide the basis for 
fitting aSDM.

2.5  |  Step 5. Compilation of environmental 
information

A variety of model predictors can be considered to investigate 
the relationship between calling behaviour and climate, and these 
should be carefully selected according to the particular animal taxa 
under study. Temperature and precipitation are well- known drivers 
of animal activity in multiples species (Abram et al., 2017; Llusia, 
Márquez, Beltrán, Moreira, et al., 2013; Wong & Candolin, 2015) and 
are obvious primary candidates for any aSDM. In cases where eco-
logical information about the species of interest is lacking, a multi- 
variate approach (e.g. Principal Component Analysis) can be used 
to identify environmental gradients and reduce the dimensionality 
of the dataset (Manly & Alberto, 2016). Many other environmental 
factors might be worth adding, such as cloud cover, wind speed, as 
well as a range of habitat features, if available. These variables can 
be monitored at the study sites using on- site equipment (e.g. sen-
sors), retrieved from nearby weather stations, or interpolated from 
climate datasets, which can even be validated or readjusted using 
locally monitored weather conditions.

When aSDMs intend to forecast potential environment- driven 
changes on behaviour, they require information on future conditions 
for each variable included in the model, which might limit the nature 
of the selected variables. In that case, the use of interpolated layers 
of climate in all modelling phases (training, validation and prediction) 
is generally advised (Hijmans et al., 2005). This allows to keep data 
standardized and at the right scale, and avoids mixing sources of in-
formation (e.g. on- site sensors and interpolated layers). However, to 
couple environmental and acoustic data for aSDMs, high temporal 
resolution data provided by weather station and on- site sensors will 
often be necessary. In that case, it is possible to combine environ-
mental and acoustic data, as long as they are at comparable scales. 
Global climate and weather data are available at various spatial and 
temporal resolutions (from annual to daily), with predictions on fu-
ture climate according to multiple global climate models and shared 
socioeconomic pathways (e.g. https://world clim.org). These envi-
ronmental variables can be rescaled to fit the temporal resolution 
of audio recordings or the desired resolution of analysis. Moreover, 
new variables can be computed considering time lags between 
weather conditions and species response.

In addition to climate data, the performance of aSDMs is pre-
sumably improved when including photoperiod as a model pre-
dictor because it strongly affects the onset and timing of multiple 
animal behaviours, especially in temperate and arctic species (Tsai 
et al., 2020). There are two independent aspects of photoperiod that 
may affect animal behaviour: day length and changes in day length 
(Figure S1). In many temperate regions, while day length and climate 
in spring may resemble those in autumn, the change in day length 

progresses in the opposite direction, representing potential envi-
ronmental cues to identify these seasons and to act as important 
landmarks for seasonal rhythms in many species (Tsai et al., 2020). 
When calling behaviour typically occurs in spring or autumn, we thus 
recommend using changes in day length and/or changes in tempera-
ture as model predictors, while in summer or winter calling activity 
will be best predicted using day length and/or temperature. These 
variables can be obtained from a variety of sources, including the R 
package geosphere that computes day length in function of latitude 
(Hijmans, 2019).

2.6  |  Step 6. Combining acoustic and 
environmental datasets

Modelling requires the estimation of a response variable that fits 
with the scale of the predictors. PAM provides high temporal reso-
lution data (e.g. hourly) that often mismatches coarser information 
on future climate (e.g. monthly). When combining acoustic and cli-
mate datasets, it is thus necessary to summarize data at the highest 
resolution to match data at the coarsest scale. Although it repre-
sents a loss of data resolution, we suggest rescaling information on 
animal activity patterns when calculating the response variable; for 
instance, by computing the number of recordings with calling activ-
ity over a given period (e.g. a month; see Study case), which can be 
seen as the probability of calling behaviour (or calling probability) 
over that period.

2.7  |  Step 7. Modelling environmental suitability 
for calling behaviour

We propose two alternative approaches to estimate environmental 
suitability for calling behaviour of the study species and forecast 
climate- driven changes in animal acoustic activity: regression mod-
els and boundary models (Figure 1). The first approach is based on 
statistical regression analyses (e.g. generalized linear mixed models) 
that fits the relationship between calling behaviour (response varia-
ble) and environmental factors (predictors) at the specified temporal 
resolution. For this type of aSDM, the response might be calculated 
as calling probability (see previous step). The second approach aims 
at determining the environmental breadth of calling behaviour, 
based on the information collected across the species distribution 
(e.g. gradients, extremes, etc.), which is described as the range of 
environmental conditions (i.e. boundaries) in which acoustic activity 
is performed. The boundary approach estimates environmental suit-
ability as the proportion of time (e.g. hours or days) with favourable 
conditions for calling (i.e. those within the environmental breadth 
of calling behaviour). This can also be calculated as the overlap be-
tween those ranges in a given period (see Figure 1). Although there 
must be other convenient ways to build aSDMs, we propose these 
two approaches as starting points for the development of this meth-
odological framework (see Study case in Supporting Information for 
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full details). Potential avenues for improvement might include to 
model and account for biases on acoustic detection or other sources 
of model uncertainty.

2.8  |  Step 8. Evaluation of model performance

Model validation is a crucial step to evaluate the reliability of the 
predictions. We recommend a repeated randomized cross- validation 
which allows to assess model predictions without requiring extra 
data or removing data for the validation set. This iterative resam-
pling process randomly splits the original data into two samples 
(training and validation sets, e.g. 70% and 30% of days within each 
month respectively), subsequently used to fit the model (training) 
and to evaluate the model predictive performance for each estimate 
by comparing observed and predicted values for the new set (vali-
dation). This comparison can be conducted using correlation coeffi-
cients with continuous response variables (e.g. calling probability) or 
a confusion matrix and associated performance metrics in the case 
of categorical response variables (e.g. presence– absence of activity).

2.9  |  Step 9. Prediction of behavioural estimates at 
spatio- temporal scales

Once models are fitted and their predictive capacity tested, we 
can apply them to project environmental suitability for calling be-
haviour at different spatial (i.e. geographical areas) and temporal 
scales (e.g. past, present and future scenarios). Spatial projections 
can be obtained using standard biogeographic tools in R such as the 
packages raster, maps, maptools or rgeos (Bivand et al., 2019; Bivand 
& Rundel, 2017; Brownrigg, 2013; Hijmans, 2021), enabling spatial 
visualizations and generation of new datasets for further statistical 
analysis. As aSDMs are trained with a large environmental variation 
observed over time, they can likely be used to predict across envi-
ronmental gradients found at large geographical regions without the 
need of extrapolation (see Section 4). Thus, aSDMs allow to compare 
current and future conditions for calling behaviour and to forecast 
potential climate- driven shifts in distribution and phenology, con-
tributing to evaluate climate change impacts on biodiversity and 
address questions such as: are environmental conditions for calling 
behaviour expected to decline or improve? Is the breeding season or 
species range predicted to be shifted, reduced or expanded?

3  |  STUDY C A SE:  THE IBERIAN TREE 
FROG

3.1  |  Data collection

To illustrate how to build aSDMs, we used a dataset on calling be-
haviour of the Iberian tree frog (Hyla molleri Bedriaga, 1890). Based 
on a year- round acoustic monitoring of two populations located at 

the thermal extremes of the species range, this dataset documents 
the temporal activity patterns (hourly presence– absence of calling 
activity) and local environmental conditions in 2007– 2009 (Llusia, 
Márquez, Beltrán, Benítez, et al., 2013). We selected this model 
species for fitting, evaluating and projecting aSDMs by following 
all steps of the proposed framework (see previous section). Details 
and specifications of the methods can be found in Supporting 
Information.

3.2  |  Model fitting

Calling activity of the Iberian tree frog was positively influenced by 
monthly temperature and photoperiod (Figure 2a– c). Increased envi-
ronmental suitability for calling behaviour was observed with higher 
monthly minimum temperatures and larger amount of change in 
photoperiod, a consistent response found in both cold and hot popu-
lations (Table S1). The boundary model estimated the environmen-
tal breadth of calling behaviour of the study species, which ranged 
from 5.6 to 25.8°C of monthly minimum air temperature, from −14 
to 156 s of monthly photoperiod change, and above a minimum pre-
cipitation of 29.5 mm (Figure 2d).

3.3  |  Predictive performance

Overall, the two types of aSDMs (regression and boundary) per-
formed well for predicting calling behaviour of the Iberian tree 
frog (Figure 3a). Observed and predicted calling probability were 
positively correlated in most iterations for both SDMs, though the 
regression model showed a higher predictive performance (mean 
correlation of 0.75 and significant positive correlations in 99.7% of 
the iterations) than the boundary model (0.50 and 85%; Figure 3a). 
The predictive performance of the regression model varied slightly 
over periods and populations. This model accurately estimated 
periods with no calling activity (August– December), yet its per-
formance decreased during the breeding season (January– July). In 
general, calling probability was overestimated for the hot popula-
tion, and slightly underestimated for the cold population (Figure 3b). 
Similar results were found when considering the observed calling 
probability as presence– absence data, with ROC AUC revealing an 
overall high performance, which was higher for the regression model 
(Figure 3c).

3.4  |  Predicted shifts in environmental suitability 
for calling behaviour

The two aSDMs predicted fairly similar values of environmental 
suitability for calling behaviour across the species range and cur-
rent and future climate scenarios. Under current conditions, calling 
probability was predicted to progressively increase from January 
to June and from southern to northern regions of the Iberian 
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Peninsula (Figures S2 and S3), in agreement with the breeding pat-
terns of the Iberian tree frog (Llusia, Márquez, Beltrán, Benítez, 
et al., 2013). Under the RCP8.5 scenario, our aSDMs forecast im-
provements in the environmental conditions for calling activity 
over the entire year and across the species range for 2061– 2080 
(Figure 4 and Figure S4). Specifically, calling probability of the 
species is forecast to progressively increase in the future, from 
early winter (December– January) to early summer (June) following 
a southwest- northeast axis across the Iberian Peninsula (Figure 4 
and Figure S4).

4  |  DISCUSSION

We describe a novel framework to model species distribution and 
behaviour based on acoustic monitoring. This framework, termed 
aSDM, is the first practical proposal to break the ‘silence of bioge-
ography’ (Lomolino et al., 2015). Our work provides a step- by- step 
guide for the application of aSDMs and demonstrates the efficiency 
of this tool to assess how climate change might drive spatial and 
temporal shifts in environmental suitability for sound production, 
a key adaptive behaviour for a variety of animals. Below we discuss 
the potential of aSDMs to overcome some drawbacks of the current 

SDM approaches and outline challenges and directions for future 
research.

4.1  |  Acoustic species distribution models in the 
context of biogeography

Forecasting species responses to climate change is a challenging 
task that has attracted considerable attention over the last decades 
(Pecl et al., 2017). Biogeographical approaches accomplishing this 
goal have been classified either as correlative (when estimations are 
based on observational correlations) or mechanistic (when estima-
tions are based on experimental data and explicit assumptions about 
underlying processes and mechanisms; Srivastava et al., 2019). 
Although correlative methods benefit from a wide availability of 
observational data and have been largely applied in biogeography, 
they are hardly ever generalizable to novel climates (Fernández & 
Hamilton, 2015; Townsend Peterson et al., 2007) and offer less un-
derstanding of the eco- physiological processes driving biogeograph-
ical shifts (Kearney & Porter, 2009). On the contrary, mechanistic 
models attempt to overcome such constraints by grounding their 
parameters on experimental data. Yet this approach also has limi-
tations, as it provides less precision to predict ecological processes 

F I G U R E  2  Effect of environmental factors on the monthly probability of calling activity of the Iberian tree frog (Hyla molleri), based on 
passive acoustic recordings in two populations located at the cold (blue) and hot (orange) extreme of the species distribution range, and 
estimated by the regression model (a– c; solid and dashed lines show the model prediction and 95% confidence intervals, respectively) and 
the boundary model (d; box shows the estimated species environmental breadth of calling behaviour).
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under realistic conditions (Olsson & Jönsson, 2014), and its elevated 
costs prevent a wide application. Acoustic SDMs can be seen as an 
intermediate solution to deal with these drawbacks. In Table 1 and 
Table S2 we scrutinize similarities, differences and novelties of the 
aSDM approach in comparison with the long- established correlative 
and mechanistic approaches, following the detailed assessment pro-
vided by Kearney and Porter (2009) as a baseline.

As correlative approaches, aSDMs can be considered ecologically 
realistic because the observed response is limited by factors other 
than climate, such as biological interactions and other environmental 
determinants. Thus, in the context of the niche theory, aSDMs also 
estimate species realized niche (Pearson & Dawson, 2003; Table 1 
and Table S2— (a,b,d,k)). Despite these similitudes with correlative 
models, aSDMs strongly differ from them in their response variable. 
While correlative SDMs focus on species occurrence or abundance, 
aSDMs rely on the calling behaviour of the study species, which 
is monitored by automated acoustic sensors. Animal sounds are 

frequently related to reproductive and social behaviour, as well as 
predator– prey interactions, playing a crucial role in fitness and sur-
vival (Fletcher, 2007). Thus, acoustic data have ecological and phys-
iological implications (Sueur & Farina, 2015), comparable to that of 
mechanistic information (Table 1 and Table S2—(n)).

On the other hand, mechanistic SDMs are often based on ther-
mal tolerance determined experimentally by sublethal endpoints 
and physiological critical thermal limits (i.e. CTmax and CTmin; 
Lutterschmidt & Hutchison, 1997); therefore, their predictions 
might be less conservative. Individuals performing highly energy- 
demanding behaviours (e.g. reproductive or calling activity) are likely 
constrained by narrower thermal bounds than those determined by 
sublethal endpoints. In this sense, aSDMs would lead to more real-
istic predictions for some species that rely on acoustic communica-
tion for mating, territory defence and other social and interspecific 
interactions. aSDMs can be applied to a variety of taxa, such as 
most mammals, birds, anurans and some insects. Besides, acoustic 

F I G U R E  3  Predictive performance of the regression and boundary models based on continuous probability (a, b) and categorical 
presence– absence data (c). (a) Spearman correlation coefficients between observed and predicted calling probability per month (median 
and 95% confidence intervals), computed over 1000 iterations of random selection of training and validation sets (20– 23 and 8 days per 
month, respectively; see Study case in Supporting Information). Red dashed line depicts significance threshold of the coefficients at the 
nominal level of 0.05. (b) Monthly residuals for the regression model. (c) Area under the curve (AUC) obtained from ROC curves based on the 
confusion matrices between observed and predicted calling probability per month (median and 95% confidence intervals), computed over 
1000 iterations of random selection of training and validation sets (20– 23 and 8 days per month, respectively; see Study case in Supporting 
Information). Red dashed line depicts an AUC of 0.5 indicating random predictions, while AUC close to 1 indicates highly accurate 
predictions.
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sensors are cost- efficient tools that can provide information about 
whole acoustic communities, hence it likely reduces the effort and 
budget of gathering species- specific data in comparison with mech-
anistic approaches (Table 1 and Table S2— (f,g,n); Sugai et al., 2020). 
In summary, the acoustic approach can produce ecologically mean-
ingful results with reasonable costs, increasing its applicability to a 
larger number of species and regions.

Another singularity of aSDMs is that they are built on samples 
collected at high temporal resolution. Passive acoustics enables to 
monitor animal activity over long periods (Andreassen et al., 2014; 
Buxton et al., 2016; Carriço et al., 2019; Sugai et al., 2020), capturing 
phenological dynamics and providing grounds for projecting pheno-
logical shifts across time and space (Sueur et al., 2019). This feature 
favours a higher resolution in the relationship between the climatic 
predictors and the response variable in comparison with correlative 
SDMs that often model species responses using a single observation 
per site and coarse resolution climate data. Moreover, this high tem-
poral resolution enables aSDMs to assess the response of species 
across a wider range of climatic conditions than correlative SDMs. 
The variation in climatic conditions is better captured when monitor-
ing sites located at the climatic extremes of the species range over 
long periods (e.g. a year, as in our study case) than when consider-
ing annual climatic averages across the species range (as in a typical 

correlative model, Figure 5). Acoustic models are thus fitted with 
responses to a wider and higher- resolution range of environmental 
conditions than correlative models and, as a consequence, are likely 
better suited to forecast species distribution under novel conditions. 
The acoustic approach follows a time- for- space substitution logic 
rather than the space- for- time substitution strategy, characteristic 
of correlative models (Blois et al., 2013). By increasing the number of 
monitored sites, aSDMs may gain in spatial resolution (Table 1 and 
Table S2— (b,e,j,o)), a possibility that is becoming easier with ongoing 
technical advances in sound recording and automated analysis (see 
Section 4.3).

4.2  |  Study case: Fitting a species 
distribution model

Based on a year- round PAM of two populations located at the 
thermal extremes of the geographic range of the Iberian tree frog, 
we demonstrate that the predictive performance of aSDMs is ro-
bust and consistent using two distinct approaches (regression and 
boundary models). The regression model fits a linear model to pre-
dict environmental suitability for calling activity, while the boundary 
model estimates an environmental breadth of this behaviour. The 

F I G U R E  4  Spatio- temporal shifts in environmental suitability for calling behaviour of the Iberian tree frog forecast by the regression 
model under the RCP 8.5 climate change scenario (difference between current to 2061– 2080 conditions). Predicted shifts can potentially 
vary from −1 to 1, although the model only predicts positive values (depicted in dark green) in this case. Black polygons show the current 
distribution range of the study species in the Iberian Peninsula (Pleguezuelos et al., 2002).
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regression model appears to have a slightly higher accuracy, proba-
bly because the estimated range of suitable conditions in the bound-
ary model rely on the identification of extreme values that can be 
missed during data collection or when randomly selecting the valida-
tion dataset. Yet both models provided fairly consistent predictions 
of improvements of environmental conditions for the species calling 
behaviour under the RCP8.5 scenario. We recommend to select the 
model that best suits to the research questions: an assessment of 
the limits of a species niche may benefit from the boundary model, 
while the estimation of the probability of calling behaviour along an 
environmental gradient may require the regression model.

4.3  |  Future challenges

Despite their advantages, the application of aSDMs faces some chal-
lenges that may be addressed by carefully directing current and future 
research efforts. First, the large time- series of passive acoustic record-
ings often require sophisticated sound analyses to estimate species 
activity patterns used to fit the predictive models. Considering the 
amounts of raw acoustic data, automated or semi- automated signal 
recognition methods are needed to mitigate such a time- consuming 
task (Aide et al., 2013; Andreassen et al., 2014). Some software (e.g. 

TA B L E  1  Features and advantages of the acoustic approach to develop species distribution models in comparison with correlative 
and mechanistic approaches, following the proposal by Kearney and Porter (2009). An extended version of this table is in Supporting 
Information (Table S2)

Features Advantages

(I) Conceptualization

(a) Theoretical basis Same as correlative approaches Same as correlative approaches

(b) Approach and focus Observational, acoustic activity Models based on realistic responses to 
environmental variation, specially not only 
across time but also across space

(c) Model selection Flexible Same as correlative approaches

(d) Generality (transferability) and 
precision (ecological realism)

Same as correlative approaches Same as correlative approaches

(e) Scaling assumption Time- for- space substitution: species 
temporal activity patterns determine 
spatio- temporal changes in their 
distribution

Higher precision of phenological estimates

(II) Data requirements

(f) Focal species Taxa producing airborne, substrate- 
borne or waterborne sounds

Applicable to all species producing sounds

(g) Species data Acoustic data (sound presence, 
presence/absence or abundance)

Data collection using non- invasive and cost- 
efficient methods (affordable for a large 
number of species)

(h) Spatial data Flexible Same as correlative approaches

(i) Scale Flexible Same as correlative approaches

(j) Scale with highest resolution Temporal scale Can capture phenological variation across space. 
Better capacity to afford predictions in novel 
climates than correlative approaches

(III) Model fitting

(k) Parameters Dimensionless coefficients Robust because parameters are estimated from 
several acoustic datasets within several 
analytical frameworks. Realistic because 
they are estimated in natural conditions

(l) Geographical variation (plastic and 
genetic)

Explicit (Acoustic monitoring of 
populations at distribution edges or 
across environmental gradients)

Estimates behavioural responses in singular 
populations, which allow to assess inter- 
population geographic variation

(m) Evolutionary change Explicit Same as mechanistic approaches

(IV) Inference

(n) Output Estimates of probability of calling 
behaviour (linked to fitness- related 
behaviours)

Ecologically and behaviourally interpretable

(o) Projection capacity Spatial and phenological shifts Precise estimations of spatial and phenological 
shifts

(p) Validation and evaluation Same as correlative approaches Same as correlative approaches
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Araya- Salas & Smith- Vidaurre, 2016; Ovaskainen et al., 2018; Ulloa 
et al., 2021) and species- specific recognizers are already available 
to apply automated signal detection with suitable efficiency (e.g. 
Potamitis et al., 2014; Ulloa et al., 2016). However, multiple fac-
tors typically challenge species detection in PAM recordings (e.g. 
noise from abiotic, biotic and anthropogenic sources; Priyadarshani 
et al., 2018). aSDMs will be reliant on the development of efficient 
automated analyses that allow to determine calling activity patterns 
from the avalanche of collected recordings.

Second, aSDMs will also benefit from an increased number of 
monitored populations and sites, so that datasets can achieve a bet-
ter balance between temporal and spatial resolution of sampling. Our 
study case was based on two monitored populations of the Iberian 
tree frog at the thermal extremes of the species range. By increasing 
the number of monitored sites, researchers might include populations 
at the extremes of each environmental gradient included in the model. 
Ideally, aSDMs might also add replicates of each extreme or target site. 
This goal is expected to become realistic in the near future consider-
ing the current development of novel inexpensive recording units (Hill 
et al., 2018; Sethi et al., 2018; Whytock & Christie, 2017), as well as 
refined analyses. The design of a representative spatio- temporal cov-
erage of environmental variation by targeting environmental extremes 
or gradients will increase the predictive performance of the acoustic 
approaches.

Finally, collaborative research networks and open- access data 
could remarkably contribute to spread the application of aSDMs 
for ecological and conservation purposes. Several long- term open- 
access PAM programs with wide spatial coverage have recently 
been launched (Roe et al., 2021) and might lay the foundations for 
the broad application of aSDMs. Following these initiatives, the 
bio-  and eco- acoustic community should also develop platforms 
for data- sharing, making long- term acoustic datasets available to 
the entire scientific community. This resource may take inspiration 
from programs such as the GBIF to contribute to biogeographical 
research (Campos- Cerqueira & Aide, 2016). For example, long- 
established initiatives (e.g. Xeno- canto) and novel tools (e.g. eBird) 
could allow to support spatially explicit acoustic datasets over 
long periods and across species ranges. aSDMs will be instrumen-
tal in leveraging the potential of these platforms. Future research 
thus needs to further exploit the possibilities opened by aSDMs to 
better understand species distribution, behaviour, and phenology 
and the capacity of populations to cope with changing environ-
mental conditions.
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