74 research outputs found

    Cardiopulmonary exercise test in patients with refractory angina: functional and ischemic evaluation

    Get PDF
    Objectives: Refractory angina (RA) is a chronic condition clinically characterized by low effort tolerance; therefore, physical stress testing is not usually requested for these patients. Cardiopulmonary exercise testing (CPET) is considered a gold standard examination for functional capacity evaluation, even in submaximal tests, and it has gained great prominence in detecting ischemia. The authors aimed to determine cardiorespiratory capacity by using the oxygen consumption efficiency slope (OUES) in patients with refractory angina. The authors also studied the O2 pulse response by CPET and the association of ischemic changes with contractile modifications by exercise stress echocardiography (ESE). Methods: Thirty-one patients of both sexes, aged 45 to 75 years, with symptomatic (Canadian Cardiovascular Society class II to IV) angina who underwent CPET on a treadmill and exercise stress echocardiography on a lower limb cycle ergometer were studied. ClinicalTrials.gov: NCT03218891. Results: The patients had low cardiorespiratory capacity (OUES of 1.74 ± 0.4 L/min; 63.9±14.7% of predicted), and 77% of patients had a flattening or drop in O2 pulse response. There was a direct association between Heart Rate (HR) at the onset of myocardial ischemia detected by ESE and HR at the onset of flattening or drop in oxygen pulse response detected by CPET (R = 0.48; p = 0.019). Conclusion: Patients with refractory angina demonstrate low cardiorespiratory capacity. CPET shows good sensitivity for detecting abnormal cardiovascular response in these patients with a significant relationship between flattening O2 pulse response during CEPT and contractile alterations detected by exercise stress echocardiography

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≄ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF

    Erratum: First observation and amplitude analysis of the B- -> D+K-pi(-) decay [Phys. Rev. D 91, 092002 (2015)]

    Get PDF
    • 

    corecore