53 research outputs found

    African cities : towards a new paradigm - 'chameleonic' urbanism for hybrid cities

    Get PDF
    African cities demand growing a network-type articulation between their formal centres and the vast, informal polymorphic suburban housing areas surrounding them. A new urban paradigm should be proclaimed: urban proposals that aim to consolidate an improved and adapted adjustment between regular patterns (attached to macro scale planning) and plural configurations of a self-organized city, based on micro stratagems that are developed by indigent citizens in their everyday life. This new urban paradigm relies on nature and collective/public spaces as major elements in the reassembly of fragmented African urban spaces: [re]develop wide, and [re]distribute social services, public services and civic infrastructure in the extension of African City – urban progress, articulated through improvement of human living conditions, needs to be combined with overall sustainability. The new urban paradigm points to flexible and regenerative morphologies in urban space, that are sensible and capable of adapting to multi-contexts – a ‘chameleonic’ urbanism, that is based on multiple – and mixed – visions of micro-units inherent to the African City, that propose derivate forms from themselves.Department of Culture, Delegation of the Flemish Government in South Africa, Embassy of Belgiumhttps://africanperspectivesconference.wordpress.com

    Region graph partition function expansion and approximate free energy landscapes: Theory and some numerical results

    Full text link
    Graphical models for finite-dimensional spin glasses and real-world combinatorial optimization and satisfaction problems usually have an abundant number of short loops. The cluster variation method and its extension, the region graph method, are theoretical approaches for treating the complicated short-loop-induced local correlations. For graphical models represented by non-redundant or redundant region graphs, approximate free energy landscapes are constructed in this paper through the mathematical framework of region graph partition function expansion. Several free energy functionals are obtained, each of which use a set of probability distribution functions or functionals as order parameters. These probability distribution function/functionals are required to satisfy the region graph belief-propagation equation or the region graph survey-propagation equation to ensure vanishing correction contributions of region subgraphs with dangling edges. As a simple application of the general theory, we perform region graph belief-propagation simulations on the square-lattice ferromagnetic Ising model and the Edwards-Anderson model. Considerable improvements over the conventional Bethe-Peierls approximation are achieved. Collective domains of different sizes in the disordered and frustrated square lattice are identified by the message-passing procedure. Such collective domains and the frustrations among them are responsible for the low-temperature glass-like dynamical behaviors of the system.Comment: 30 pages, 11 figures. More discussion on redundant region graphs. To be published by Journal of Statistical Physic

    The XMM Cluster Survey: Exploring scaling relations and completeness of the Dark Energy Survey Year 3 redMaPPer cluster catalogue

    Get PDF
    We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of three years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2^2, bounded by the area of 4 contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray selected sample is fully matched with entries in the redMaPPer catalogue, above λ>\lambda>20 and within 0.1<z<< z <0.9. Conversely, only 38\% of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray selected clusters, we investigate the form of the X-ray luminosity-temperature (LX−TXL_{X}-T_{X}), luminosity-richness (LX−λL_{X}-\lambda) and temperature-richness (TX−λT_{X}-\lambda) scaling relations. We find that the fitted forms of the LX−TXL_{X}-T_{X} relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e., LX−λL_{X}-\lambda and TX−λT_{X}-\lambda) between the optical and X-ray selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray selected samples compared to optically selected samples.Comment: Accepted for publication to MNRA
    • 

    corecore