135 research outputs found

    Penerapan Teknologi Pembuatan Kompos Bagi Kelombok Petani Kopi Arabika di Kelurahan Kisanata

    Get PDF
    Program Pemberdayaan Masyarakat kelurahan Kisanata, kecamatan Bajawa dalam memanfaatkan limbah pertanian seperti daun-daun, ranting-ranting kayu, dan rumput dengan komposisi 30% hijauan dan 60 % bahan coklat serta 10 % komponen lain untuk pembuatan pupuk kompos. Sasaran utama program ini adalah masyarakat kelurahan Kisanata dan sekitarnya khususnya petani kopi Arabika Flores Bajawa. Pada kegiatan ini diharapkan masyarakat tersebut dapat memahami dan terampil membuat pupuk dari hijauan dan bokashi yang bernilai ekonomis dari bahan limbah pertanian. Hal ini tentu sangat membantu masyarakat petani dalam meningkatkan produktifitas pertanian sekaligus kesejahteraan mereka. Tujuan dari kegiatan ini yaitu untuk meningkatkan peran masyarakat dalam melestarikan lingkungan hidup sebagai jasa ekologi dan bernilai ekonomi. Metode yang diterapkan dalam kegiatan ini yaitu mencakup pada perspektif action research dengan manfaat yang ingin dicapai yakni perbaikan dan peningkatan pemahaman terhadap proses pembuatan pupuk kompos. Hasil kegiatan yaitu meningkatkan pengetahuan dan keterampilan petani dalam proses pupuk organik dari limbah pertanian yang banyak terdapat di lingkungan sekitarnya

    Pelatihan Perawatan Pompa Hidram untuk Kelompok Tani Utama Di Daerah Baumata

    Get PDF
    Dry land agriculture is a crop cultivation activity carried out in moderate to severe drought conditions during most of the growing season. As a result, special cultivation techniques, types of crops and farming systems are needed to enable sustainable production. The partner involved in the Program Kemitraan Masyarakat (PKM) is a farmer group called the main farmer group. The main farmer group is located in Baumata village, Taebenu sub-district, Kupang district. This farmer group has used appropriate technology in the form of a hydram pump. The Hydram Pump, which is located in Baumata village is a product of the LP2M through the Mechanical Engineering Study Program, Faculty of Science and Engineering in 2018and is still running and is still being used by farmer groups. Based on the survey and coordination of the implementation team to the location until December 2019, it was concluded that there was a need for field activities in the context of training activities for members of farmer groups on how to repair, maintain and deal with pump problems which decrease productivity and aspects of pump work functions accordingly with a description of the report of the members of the Farmer Group

    Rancang Bangun dan Analisis Kinerja Rumah Pengering Kopi Tipe Efek Rumah Kaca dengan Mekanisme Konveksi Paksa

    Get PDF
    Penelitian ini bertujuan untuk merancang rumah pengering kopi menggunakan plastik ultra violet (UV Solar Dryer) dengan mekanisme konveksi paksa dan menguji performansi rumah pengering kopi. Penelitian ini dilakukan dengan melakukan perancangan rumah pengering biji kopi terlebih dahulu dan kemudian dilakukan uji performansi dari rumah pengering tersebut. Desain rumah pengering dengan ukuran 5,5 x 2,9 x 1,9 meter menggunakan cover berupa plastik ultra violet. Di dalam rumah pengering terdapat tiga buah rak permanen dengan ukuran masing-masing rak adalah 3,5 x 0,5 x 0,85 meter. Untuk mempercepat proses pengeringan, meratakan suhu bahan serta menguapkan air bahan maka dipasanglah dua buah exhaust fan dengan ukuran 0,35 x 0,22 x 0,395 meter. Uji performansi dilakukan dengan tiga variasi kecepatan udara pada exhaust fan yaitu 0,5 ; 1,0 ; dan 1,36 m/s. Besaran-besaran penting yang dianalisis adalah laju pengeringan bahan, konsumsi energi spesifik (KES) dan efisiensi penggunaan energi. Analisis teknik menunjukkan bahwa rumah pengering kopi layak untuk  digunakan dalam usaha pengeringan kopi. Hal ini didasarkan pada nilai  efisiensi pengeringan yang dicapai pada pengujian di pukul 14.00 dengan kecepatan udara 1,0 m/s cenderung lebih besar dari pada pengujian dengan kecepatan 1,36 m/s dan 0,5 m/s di pukul 11.00, 12.00, 13.00 dan 15.00 dengan nilai efisiensi tertinggi 19,448 %. Sedangkan untuk nilai konsumsi energi spesifik (KES) tertinggi pada pengujian di pukul 12.00 dengan kecepatan udara 0,5 m/s adalah 93824,19 kJ/kg.This study aims to design a coffee dryer house using ultra violet plastic (UV Solar Dryer) with a forced convection mechanism and to test the performance of the coffee dryer house. This research was conducted by designing the coffee bean drying house and testing the performance of the drying house. The design of the dryer house with a size of 5.5 x 2.9 x 1.9 meters uses a cover in the form of ultra violet plastic. Inside the dryer house there are three permanent racks with a size of 3.5 x 0.5 x 0.85 meters each. To speed up the drying process, equalize the temperature of the material and evaporate the material water, two exhaust fans are installed with a size of 0.35 x 0.22 x 0.395 meters. The performance test was carried out with three variations of air velocity at the exhaust fan, namely 0.5; 1.0; and 1.36 m/s. The important quantities analyzed are the drying rate of the material, the specific energy consumption and the efficiency of energy use. Technical analysis shows that the coffee dryer house is suitable for use in the coffee drying business. This is based on the drying efficiency value achieved in the test at 14.00 with an air velocity of 1.0 m/s which tends to be greater than the test with a speed of 1.36 m/s and 0.5 m/s at 11.00, 12.00, 13.00 and 15.00 with the highest efficiency value of 19.448%. Meanwhile, the highest value of specific energy consumption in the test at 12.00 with an air velocity of 0.5 m/s was 93824.19 kJ/k

    Analisis Performansi Turbin Angin Poros Horisontal Model Double Rotor Contra Rotating dengan Posisi Rotor Saling Berhimpitan

    Get PDF
    Abstract The contra rotating wind turbine is a horizontal axis turbine which has two shaft rotating in opposite directions on the same axis, and it can work at low wind speeds. In general, the performance of the wind turbine are affected by several factors, which is the aerodynamics shape of turbine, the numbers of blade and the selection angle of blade. In this study, conducted by determining the variation of angle on the blade and the blade angle used in the study is 0o, 5o, and 10o, on the two rotors with diameter of front rotor is 0.50 meters and the rear rotor is 0.30 meters, with the position of the rotor blade is coincident with each other. The purpose of this study, is to determine the effect of blade angle variation on the turbine rotation (rpm), torque (T), the power coefficient (Cp), torque coefficient (Cq) and the efficient of the turbine at any wind speeds variations. On the graph relation of blade angle on the shaft rotation, turbine rotation riding known to along with the addition of angle of the blade. The speed of wind is very affect on the output or mechanical power and power coefficient. On the blade angle 0o with wind speed at 4.03 m/s, the power can be generate is 3.013 Watt, and for blade angle 10o with wind speeds 6.08 m/s, the power can be generate is 8.217 Watt. The lowest rotation of rotor without loading is 702 rpm at the wind speeds on 4.03 m/s with angle of blade 0o, the highest rotation of rotor is 1484 rpm on the wind speeds 6.08 m/s with angle of blade 10o. From the graph of analysis data can be seen , with change of angle blade on wind turbine horizontal shaft contra rotating models, power coefficient (Cp) generated of turbine activity increases with increased of angle, with Cp maks 0.718 for angle 10o, maximum efficiency an generated reach out 71.8%

    Attribution of space-time variability in global-ocean dissolved inorganic Carbon

    Get PDF
    The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995–2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year−1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2 (1.4 Pg C). In the upper 100 m, which stores roughly 13 (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year−1) and biological processes are the largest loss (8.6 Pg C year−1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997–1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink. © 2022. The Authors

    Local and equatorial forcing of seasonal variations of the North Equatorial Countercurrent in the Atlantic Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 238-254, doi:10.1175/JPO2848.1.The seasonal variation of the North Equatorial Countercurrent (NECC) in the tropical Atlantic Ocean is investigated by using a linear, one-layer reduced-gravity ocean model and by analyzing sea surface height (SSH) data from Ocean Topography Experiment (TOPEX)/Poseidon (T/P) altimeters. The T/P data indicate that the seasonal variability of the NECC geostrophic transport, between 3° and 10°N, is dominated by SSH changes in the southern flank of the current. Since the southern boundary of the NECC is located partially within the equatorial waveguide, the SSH variation there can be influenced considerably by the equatorial dynamics. Therefore, it is hypothesized that the wind stress forcing along the equator is the leading driver for the seasonal cycle of the NECC transport. The wind stress curl in the NECC region is an important but smaller contributor. This hypothesis is tested by several sensitivity experiments that are designed to separate the two forcing mechanisms. In the first sensitivity run, a wind stress field that has a zero curl is used to force the ocean model. The result shows that the NECC geostrophic transport retains most of its seasonal variability. The same happens in another experiment in which the seasonal wind stress is applied only within a narrow band along the equator outside the NECC range. To further demonstrate the role of equatorial waves, another experiment was run in which the wind stress in the Southern Hemisphere is altered so that the model excludes hemispherically symmetrical waves (Kelvin waves and odd-numbered meridional modes of equatorial Rossby waves) and instead excites only the antisymmetrical equatorial Rossby modes. The circulation in the northern tropical ocean, including the NECC, is affected considerably even though the local wind stress there remains unchanged. All these appear to support the hypothesis presented in this paper.This study is supported by NOAA OGP’s CLIVAR-Atlantic Program (authors J. Yang and T. Joyce: NOAA Grant NA16GP1573) and NASA Physical Oceanography Program (J. Yang: JPL Grant 1217578)

    Sensitivity analysis of reactive ecological dynamics

    Get PDF
    Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Bulletin of Mathematical Biology 70 (2008): 1634-1659, doi:10.1007/s11538-008-9312-7.Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.Financial support provided by NSF grant DEB-0343820, NOAA grant NA03-NMF4720491, the Ocean Life Institute of the Woods Hole Oceanographic Institution, and the Academic Programs Office of the MIT-WHOI Joint Program in Oceanography

    The response of the Antarctic Circumpolar Current to recent climate change

    Get PDF
    Observations show a significant intensification of the Southern Hemisphere westerlies, the prevailing winds between the latitudes of 30° and 60° S, over the past decades. A continuation of this intensification trend is projected by climate scenarios for the twenty-first century. The response of the Antarctic Circumpolar Current and the carbon sink in the Southern Ocean to changes in wind stress and surface buoyancy fluxes is under debate. Here we analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m. The warming and freshening is partly related to changes in the properties of the water masses that make up the Antarctic Circumpolar Current, which are consistent with the anthropogenic changes in heat and freshwater fluxes suggested by climate models. However, we detect no increase in the tilt of the surfaces of equal density across the Antarctic Circumpolar Current, in contrast to coarse-resolution model studies. Our results imply that the transport in the Antarctic Circumpolar Current and meridional overturning in the Southern Ocean are insensitive to decadal changes in wind stress

    Long-term kidney function recovery and mortality after COVID-19-associated acute kidney injury: An international multi-centre observational cohort study

    Get PDF
    Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1–365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53–3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03–4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55–5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14–1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37–0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17–1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20–1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45–1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80–13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10–1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32–1.67) and 365 days (RR 1.54, 95%CI 1.21–1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section
    • …
    corecore