62 research outputs found

    Two inbred rat strains contrasting for anxiety-related behaviors show similar levels of defensive responses to cat odor

    Get PDF
    Rodents are known to display fear-related responses when exposed to the odor of natural predators, such as cats, even when they are totally naïve to these stimuli. Based on that, a behavioral test in which rats are exposed to cat odor has been developed and proposed to model some forms of anxiety. The objective of the present study was thus to compare the LEW (Lewis) and SHR (spontaneously hypertensive rats) inbred rat strains, which display genetic differences in other classical models of anxiety, in the cat odor test. As expected, cat odor produced an increase in fear-related behaviors. However, no clear differences were found between the two strains tested. These results suggest that the type of stress experienced by LEW and SHR strains exposed to cat odor is different from that elicited by exposure to classical models of anxiety such as the elevated plus-maze, black/white box and open-field tests

    Increased sensitivity to cocaine-induced analgesia in Spontaneously Hypertensive Rats (SHR)

    Get PDF
    This study examined the analgesic effect of cocaine in Spontaneously Hypertensive Rats (SHR), which are considered a suitable model for the study of attention deficit hyperactivity disorder (ADHD), and in Wistar (WIS) rats of both sexes using the hot-plate test. In addition, we tested whether habituation to the unheated hot-plate apparatus, that "normalizes" the basal hypoalgesic phenotype of SHR, alters the subsequent cocaine-induced analgesia (CIA) in this strain. SHR of both sexes were hypoalgesic compared to WIS rats in the hot-plate test and showed higher sensitivity to CIA. Habituation to the unheated hot-plate reduced the basal nociceptive latency of SHR, suggesting cognitive/emotional modulation of pain in this strain, but did not alter the magnitude of CIA. The present study shows increased sensitivity to CIA in SHR, which may be related to abnormalities in the mesocorticolimbic dopaminergic system. Further studies using SHR strain may reveal new information on the neurobiological mechanisms underlying ADHD and its co-morbidity with drug addiction

    Mechanisms of Alcohol Addiction: Bridging Human and Animal Studies

    Get PDF
    Aim: The purpose of this brief narrative review is to address the complexities and benefits of extending animal alcohol addiction research to the human domain, emphasizing Allostasis and Incentive Sensitization, two models that inform many pre-clinical and clinical studies. Methods: The work reviewed includes a range of approaches, including: a) animal and human studies that target the biology of craving and compulsive consumption; b) human investigations that utilize alcohol self-administration and alcohol challenge paradigms, in some cases across 10 years; c) questionnaires that document changes in the positive and negative reinforcing effects of alcohol with increasing severity of addiction; and d) genomic structural equation modeling based on data from animal and human studies. Results: Several general themes emerge from specific study findings. First, positive reinforcement is characteristic of early stage addiction and sometimes diminishes with increasing severity, consistent with both Allostasis and Incentive Sensitization. Second, evidence is less consistent for the predominance of negative reinforcement in later stages of addiction, a key tenant of Allostasis. Finally, there are important individual differences in motivation to drink at a given point in time as well as person-specific change patterns across time. Conclusions: Key constructs of addiction, like stage and reinforcement, are by necessity operationalized differently in animal and human studies. Similarly, testing the validity of addiction models requires different strategies by the two research domains. Although such differences are challenging, they are not insurmountable, and there is much to be gained in understanding and treating addiction by combining pre-clinical and clinical approaches.Fil: Kramer, John. University of Iowa; Estados UnidosFil: Dick, Danielle M.. University of Virginia; Estados UnidosFil: King, Andrea. University of Chicago; Estados UnidosFil: Ray, Lara A.. University of California at Los Angeles; Estados UnidosFil: Sher, Kenneth J.. University of Missouri; Estados UnidosFil: Vena, Ashley. University of Chicago; Estados UnidosFil: Vendruscolo, Leandro F.. National Institutes of Health; Estados UnidosFil: Acion, Laura. University of Iowa; Estados Unidos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentin

    Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks

    Get PDF
    Background: A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. Results: Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. Conclusions: Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence

    Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents

    Get PDF
    Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target., SIGNIFICANCE STATEMENT Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets

    Sugar Overconsumption during Adolescence Selectively Alters Motivation and Reward Function in Adult Rats

    Get PDF
    International audienceBACKGROUND:There has been a dramatic escalation in sugar intake in the last few decades, most strikingly observed in the adolescent population. Sugar overconsumption has been associated with several adverse health consequences, including obesity and diabetes. Very little is known, however, about the impact of sugar overconsumption on mental health in general, and on reward-related behavioral disorders in particular. This study examined in rats the effects of unlimited access to sucrose during adolescence on the motivation for natural and pharmacological rewards in adulthood.METHODOLOGY/PRINCIPAL FINDINGS:Adolescent rats had free access to 5% sucrose or water from postnatal day 30 to 46. The control group had access to water only. In adulthood, rats were tested for self-administration of saccharin (sweet), maltodextrin (non-sweet), and cocaine (a potent drug of abuse) using fixed- and progressive-ratio schedules, and a concentration-response curve for each substance. Adult rats, exposed or not exposed to sucrose, were tested for saccharin self-administration later in life to verify the specificity of adolescence for the sugar effects. Sugar overconsumption during adolescence, but not during adulthood, reduced the subsequent motivation for saccharin and maltodextrin, but not cocaine. This selective decrease in motivation is more likely due to changes in brain reward processing than changes in gustatory perception.CONCLUSIONS/SIGNIFICANCE:Sugar overconsumption induces a developmental stage-specific chronic depression in reward processing that may contribute to an increase in the vulnerability to reward-related psychiatric disorders

    Convergent algorithms for protein structural alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many algorithms exist for protein structural alignment, based on internal protein coordinates or on explicit superposition of the structures. These methods are usually successful for detecting structural similarities. However, current practical methods are seldom supported by convergence theories. In particular, although the goal of each algorithm is to maximize some scoring function, there is no practical method that theoretically guarantees score maximization. A practical algorithm with solid convergence properties would be useful for the refinement of protein folding maps, and for the development of new scores designed to be correlated with functional similarity.</p> <p>Results</p> <p>In this work, the maximization of scoring functions in protein alignment is interpreted as a Low Order Value Optimization (LOVO) problem. The new interpretation provides a framework for the development of algorithms based on well established methods of continuous optimization. The resulting algorithms are convergent and <it>increase the scoring functions at every iteration</it>. The solutions obtained are critical points of the scoring functions. Two algorithms are introduced: One is based on the maximization of the scoring function with Dynamic Programming followed by the continuous maximization of <it>the same </it>score, with respect to the protein position, using a smooth Newtonian method. The second algorithm replaces the Dynamic Programming step by a fast procedure for computing the correspondence between C<it>α </it>atoms. The algorithms are shown to be very effective for the maximization of the STRUCTAL score.</p> <p>Conclusion</p> <p>The interpretation of protein alignment as a LOVO problem provides a new theoretical framework for the development of convergent protein alignment algorithms. These algorithms are shown to be very reliable for the maximization of the STRUCTAL score, and other distance-dependent scores may be optimized with same strategy. The improved score optimization provided by these algorithms provide means for the refinement of protein fold maps and also for the development of scores designed to match biological function. The LOVO strategy may be also used for more general structural superposition problems such as flexible or non-sequential alignments. The package is available on-line at http://www.ime.unicamp.br/~martinez/lovoalign.</p

    Midbrain circuit regulation of individual alcohol drinking behaviors in mice

    Get PDF
    Alcohol-use disorder (AUD) is the most prevalent substance-use disorder worldwide. There is substantial individual variability in alcohol drinking behaviors in the population, the neural circuit mechanisms of which remain elusive. Utilizing in vivo electrophysiological techniques, we find that low alcohol drinking (LAD) mice have dramatically higher ventral tegmental area (VTA) dopamine neuron firing and burst activity. Unexpectedly, VTA dopamine neuron activity in high alcohol drinking (HAD) mice does not differ from alcohol naive mice. Optogenetically enhancing VTA dopamine neuron burst activity in HAD mice decreases alcohol drinking behaviors. Circuit-specific recordings reveal that spontaneous activity of nucleus accumbens-projecting VTA (VTA-NAc) neurons is selectively higher in LAD mice. Specifically activating this projection is sufficient to reduce alcohol consumption in HAD mice. Furthermore, we uncover ionic and cellular mechanisms that suggest unique neuroadaptations between the alcohol drinking groups. Together, these data identify a neural circuit responsible for individual alcohol drinking behaviors

    Quantificação de fatores de crescimento na pele de equinos tratada com plasma rico em plaquetas

    Get PDF
    O plasma rico em plaquetas (PRP) é um produto derivado da centrifugação do sangue total, sendo rico em fatores bioativos, como os de crescimento. Apesar da ampla utilização em processos cicatriciais, há controvérsia sobre a eficácia da terapia na cicatrização cutânea. O objetivo desse estudo foi quantificar e comparar a concentração dos fatores TGF-β1 e PDGF-BB no PRP, plasma sanguíneo e pele, durante diferentes fases do processo de cicatrização da pele tratada ou não com PRP. Foram utilizados sete equinos machos castrados, mestiços, hígidos, com idade entre 16 e 17 (16,14±0,63) anos. Três lesões em formato quadrangular (6,25cm²) foram produzidas cirurgicamente nas regiões glúteas direita e esquerda de todos os animais. Doze horas após indução das feridas, 0,5mL do PRP foi administrado em cada uma das quatro extremidades das feridas de uma das regiões glúteas (Grupo tratado = GT), escolhida aleatoriamente. A região contralateral foi utilizada como controle (GC). As feridas foram submetidas à limpeza diária com água Milli Q, e amostras foram obtidas mediante biópsias realizadas com Punch de 6mm. Foram obtidas seis biópsias de pele, sendo a primeira realizada logo após a produção da ferida (T0), e as demais com 1 (T1) 2 (T2) 7 (T3) e 14 (T4) dias após a indução da lesão. A sexta biópsia (T5) foi obtida após completo fechamento da pele, que ocorreu aproximadamente aos 37 dias (36,85±7,45, GC; 38,85±6,46, GT). Também foram obtidas amostras de sangue com EDTA em todos os tempos mencionados. A quantificação dos fatores de crescimento TGF-β1 e PDGF-BB na pele, PRP e plasma sanguíneo foi realizada pela técnica ELISA. Os dados foram analisados estatisticamente pelo teste t, correlação de Pearson e regressão, utilizando nível de significância de 5%. Não houve diferença entre os grupos, nos valores dos dois fatores de crescimento mensurados na pele, nos diferentes tempos. Também não houve correlação entre a quantidade dos fatores de crescimento presentes na pele e no plasma. Por outro lado, correlação positiva foi observada entre PRP e pele no grupo tratado, para os fatores de crescimento TGF-β1 (r=0,31) e PDGF-BB (r=0,38), bem como entre ambos os fatores de crescimento presentes no PRP (r=0,81). Considerando as concentrações dos fatores de crescimento no T0, os maiores valores cutâneos (p<0,05) do TGF-β1, em ambos os grupos, ocorreram nos tempos T3 e T5. Valores mais elevados (p<0,05) do PDGF-BB ocorreram no T4 (GT) e T5 (GC). No plasma não houve alteração nas concentrações desses fatores em relação ao T0, o que sugere que o PRP não acarreta efeito sistêmico, quando os procedimentos adotados na presente pesquisa são utilizados. A administração local de PRP no volume estudado, 12 h após indução cirúrgica de ferida cutânea na região glútea de equinos não ocasiona maiores concentrações dos fatores de crescimento TGF-β1 e PDGF-BB no plasma sanguíneo e pele, durante o processo de cicatrização
    • …
    corecore