12,043 research outputs found

    HASH(0x563d4408fa10)

    Get PDF

    Realizing live sequence charts in SystemVerilog.

    Get PDF
    The design of an embedded control system starts with an investigation of properties and behaviors of the process evolving within its environment, and an analysis of the requirement for its safety performance. In early stages, system requirements are often specified as scenarios of behavior using sequence charts for different use cases. This specification must be precise, intuitive and expressive enough to capture different aspects of embedded control systems. As a rather rich and useful extension to the classical message sequence charts, live sequence charts (LSC), which provide a rich collection of constructs for specifying both possible and mandatory behaviors, are very suitable for designing an embedded control system. However, it is not a trivial task to realize a high-level design model in executable program codes effectively and correctly. This paper tackles the challenging task by providing a mapping algorithm to automatically synthesize SystemVerilog programs from given LSC specifications

    Some thoughts about nonequilibrium temperature

    Full text link
    The main objective of this paper is to show that, within the present framework of the kinetic theoretical approach to irreversible thermodynamics, there is no evidence that provides a basis to modify the ordinary Fourier equation relating the heat flux in a non-equilibrium steady state to the gradient of the local equilibrium temperature. This fact is supported, among other arguments, through the kinetic foundations of generalized hydrodynamics. Some attempts have been recently proposed asserting that, in the presence of non-linearities of the state variables, such a temperature should be replaced by the non-equilibrium temperature as defined in Extended Irreversible Thermodynamics. In the approximations used for such a temperature there is so far no evidence that sustains this proposal.Comment: 13 pages, TeX, no figures, to appear in Mol. Phy

    Efficiency at maximum power: An analytically solvable model for stochastic heat engines

    Full text link
    We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional engine working in and with a time-dependent harmonic potential.Comment: 6 pages, 3 figure

    Best practice in undertaking and reporting health technology assessments : Working Group 4 report

    Get PDF
    [Executive Summary] The aim of Working Group 4 has been to develop and disseminate best practice in undertaking and reporting assessments, and to identify needs for methodologic development. Health technology assessment (HTA) is a multidisciplinary activity that systematically examines the technical performance, safety, clinical efficacy, and effectiveness, cost, costeffectiveness, organizational implications, social consequences, legal, and ethical considerations of the application of a health technology (18). HTA activity has been continuously increasing over the last few years. Numerous HTA agencies and other institutions (termed in this report “HTA doers”) across Europe are producing an important and growing amount of HTA information. The objectives of HTA vary considerably between HTA agencies and other actors, from a strictly political decision making–oriented approach regarding advice on market licensure, coverage in benefits catalogue, or investment planning to information directed to providers or to the public. Although there seems to be broad agreement on the general elements that belong to the HTA process, and although HTA doers in Europe use similar principles (41), this is often difficult to see because of differences in language and terminology. In addition, the reporting of the findings from the assessments differs considerably. This reduces comparability and makes it difficult for those undertaking HTA assessments to integrate previous findings from other HTA doers in a subsequent evaluation of the same technology. Transparent and clear reporting is an important step toward disseminating the findings of a HTA; thus, standards that ensure high quality reporting may contribute to a wider dissemination of results. The EUR-ASSESS methodologic subgroup already proposed a framework for conducting and reporting HTA (18), which served as the basis for the current working group. New developments in the last 5 years necessitate revisiting that framework and providing a solid structure for future updates. Giving due attention to these methodologic developments, this report describes the current “best practice” in both undertaking and reporting HTA and identifies the needs for methodologic development. It concludes with specific recommendations and tools for implementing them, e.g., by providing the structure for English-language scientific summary reports and a checklist to assess the methodologic and reporting quality of HTA reports

    Polynomial Cointegration among Stationary Processes with Long Memory

    Get PDF
    n this paper we consider polynomial cointegrating relationships among stationary processes with long range dependence. We express the regression functions in terms of Hermite polynomials and we consider a form of spectral regression around frequency zero. For these estimates, we establish consistency by means of a more general result on continuously averaged estimates of the spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200

    Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2

    Get PDF
    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene
    corecore