1,440 research outputs found

    Cross-Talk and Information Transfer in Mammalian and Bacterial Signaling

    Get PDF
    In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content. This may have played a role in the evolution of new functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation observed in many bacterial two-component systems may partly be due to the loss of information content due to cross-talk

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    Search for New Particles Decaying to top-antitop in proton-antiproton collisions at squareroot(s)=1.8 TeV

    Get PDF
    We use 106 \ipb of data collected with the Collider Detector at Fermilab to search for narrow-width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on the cross section for narrow, vector resonances decaying to \ttbar are presented. At the 95% confidence level, we exclude the existence of a leptophobic \zpr boson in a model of topcolor-assisted technicolor with mass M_{\zpr} << 480 \gev for natural width Γ\Gamma = 0.012 M_{\zpr}, and M_{\zpr} << 780 \gev for Γ\Gamma = 0.04 M_{\zpr}.Comment: The CDF Collaboration, submitted to PRL 25-Feb-200

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    A Measurement of the Differential Dijet Mass Cross Section in p-pbar Collisions at sqrt{s}=1.8 TeV

    Full text link
    We present a measurement of the cross section for production of two or more jets as a function of dijet mass, based on an integrated luminosity of 86 pb^-1 collected with the Collider Detector at Fermilab. Our dijet mass spectrum is described within errors by next-to-leading order QCD predictions using CTEQ4HJ parton distributions, and is in good agreement with a similar measurement from the D0 experiment.Comment: 18 pages including 2 figures and 3 tables. Submitted to Phys. Rev. D Rapid Communication

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Search for Gluinos and Scalar Quarks in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy plus Multijets Signature

    Get PDF
    We have performed a search for gluinos (\gls) and squarks (\sq) in a data sample of 84 pb1^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab, by investigating the final state of large missing transverse energy and 3 or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed `blind', in that the inspection of the signal region is made only after the predictions from Standard Model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 \gev (95% C.L.), independent of the squark mass. For the case \msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa

    Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)

    Get PDF
    Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23 (syst) improving the statistical uncertainty by more than a factor of two. We find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs -> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure
    corecore