2,379 research outputs found

    Building Legal Competency: Foundations for a More Effective Criminology and Criminal Justice Discipline

    Get PDF
    This article argues for the need to build legal competency in the discipline of criminal justice and criminology through incorporating law courses in its PhD program curriculum, whether as black letter law (i.e. criminal law, criminal procedure, courts), sociology of law, or socio-legal studies (i.e. law and society courses). Through requiring law courses as a necessary and integral part of the curriculum, and recognizing the mainstream impact of these courses, the discipline stands to enrich the field of legal studies in criminology and criminal justice. The discipline’s need and demand for law trained tenure track faculty with PhD credentials can only be met through consistent law course offerings

    Status of the Standard Solar Model Prediction of Solar Neutrino Fluxes

    Full text link
    The Standard Solar Model (BP04) predicts a total 8B neutrino flux that is 17.2% larger than measured in the salt phase of the SNO detector (and if it were significant it will indicate oscillation to sterile neutrinos). Hence it is important to examine in details uncertainties (and values) of inputs to the SSM. Currently, the largest fractional uncertainty is due to the new evaluation of the surface composition of the sun. We examine the nuclear input on the formation of solar 8B [S17(0)] and demonstrate that it is still quite uncertain due to ill known slope of the measured astrophysical cross section factor and thus ill defined extrapolation to zero energy. This yields an additional reasonably estimated uncertainty due to extrapolation of +0.0 -3.0 eV-b (+0% -14%). Since a large discrepancy exists among measured as well as among predicted slopes, the value of S17(0) is dependent on the choice of data and theory used to extrapolate S17(0). This situation must be alleviated by new measurement(s). The "world average" is driven by the Seattle result due to the very small quoted uncertainty, which we however demonstrate it to be an over-estimated accuracy. We propose more realistic error bars for the Seattle results based on the published Seattle data.Comment: Fifth International Conferenceon Non-Accelerator New Physics, Dubna, June 20-25, 2005. Work Supported by USDOE Grant No. DE-FG02-94ER4087

    Ghost Busting: PT-Symmetric Interpretation of the Lee Model

    Full text link
    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g^2, the square of the renormalized coupling constant, above which g_0^2, the square of the unrenormalized coupling constant, is negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative. This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed exactly in the V/N-theta sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g^2.Comment: 20 pages, 9 figure

    Atom-by-atom extraction using scanning tunneling microscope tip-cluster interaction

    Full text link
    We investigate atomistic details of a single atom extraction process realized by using scanning tunneling microscope (STM) tip-cluster interaction on a Ag(111) surface at 6 K. Single atoms are extracted from a silver cluster one atom at a time using small tunneling biases less than 35 mV and a threshold tunneling resistance of 47 kOhm. A combination of total energy calculations and molecular dynamics simulations shows a lowering of the atom extraction barrier upon approaching the tip to the cluster. Thus, a mere tuning of the proximity between the tip and the cluster governs the extraction process and is sufficient to extract an atom. The atomically precise control and reproducibility of the process are demonstrated by repeatedly extracting single atoms from a silver cluster on an atom-by-atom basis

    ROWS wave spectral data collected in SAXON-FPN, November 1990

    Get PDF
    High-resolution directional wave spectra obtained with the NASA Ku-band radar ocean wave spectrometer (ROWS) on the Naval Research Laboratory P-3 aircraft during SAXON-FPN (SAR and X-Band Ocean Nonlinearities Experiment-Forschungsplattform Nordsee) experiments in the North Sea in November 1990 are presented. This experiment was the first in which the ROWS was operated with its new pc-based high-speed digital data acquisition system

    Low energy measurement of the 7Be(p,gamma)8B cross section

    Full text link
    We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm = 185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.Comment: Accepted for publication in Phys. Rev. Let

    I only have eyes for you: Ovulation redirects attention (but not memory) to attractive men

    Get PDF
    A number of studies have found a disjunction between women’s attention to, and memory for, handsome men. Although women pay initial attention to handsome men, they do not remember those men later. The present study examines how ovulation might differentially affect these attentional and memory processes. We found that women near ovulation increased their visual attention to attractive men. However, this increased visual attention did not translate into better memory. Discussion focuses on possible explanations, in the context of an emerging body of findings on disjunctions between attention to, and memory for, other people.National Institute of Mental Health (U.S.) (R01MH064734

    Asymptotic normalization coefficients (nuclear vertex constants) for p+7Be→8Bp+^7Be\to ^8B and the direct 7Be(p,γ)8B^7Be(p,\gamma)^8B astrophysical S-factors at solar energies

    Full text link
    A new analysis of the precise experimental astrophysical S-factors for the direct capture 7Be(p,γ)^7Be(p,\gamma) 8B^8B reaction [A.J.Junghans et al.Phys.Rev. C 68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried out based on the modified two - body potential approach in which the direct astrophysical S-factor, S17(E) {\rm S_{17}(E)}, is expressed in terms of the asymptotic normalization constants for p+7Be→8Bp+^7Be\to ^8B and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods-Saxon potential form is used for the bound (p+7Bep+^7Be)- state wave function and for the p7Bep^7Be- scattering wave function. New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of the asymptotic normalization constants (the nuclear vertex constants) for the p+7Be→8Bp+^7Be\to ^8B and S17(E)S_{17}(E) at E≤\le 115 keV, including EE=0. These values of S17(E)S_{17}(E) and asymptotic normalization constants have been used for getting information about the ^{\glqq}indirectly measured\grqq values of the ss wave average scattering length and the pp wave effective range parameters for p7Bep^7Be- scattering.Comment: 27 pages, 6 figure

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed
    • …
    corecore