62 research outputs found

    Specific circulating immune complexes in acute chagas' disease

    Full text link
    The presence of circulating immune complexes formed by IgM and IgG (CIC-IgM and CIC-IgG) was investigated, using antigen-specific enzyme-immunoassays (ELISA), in 30 patients with acute Chagas' disease who showed parasitemia and inoculation chagoma. Control population consisted of patients with chronic T. cruzi infection (30), acute toxoplasmosis 10), leishmaniasis (8), rheumatoid arthritis (3) and healthy individuals with negative serology for Chagas* disease (30). Acute chagasic patients were 100% CIC-IgG and 96.66% CIC-IgM positive whereas immunofluorescence tests yielded 90% and 86.66% of positivity for specific IgG and IgM antibodies, respectively. Chronic patients were 68% CIC-IgG and 0% CIC-IgM positive. The 30 negative and the 21 cross-reaction controls proved negative for ELISA (CIC-IgM and CIC-IgG). The high sensitivity of ELISA assays would allow early immunologic diagnosis, as well as prompt treatment, of acute T. cruzi infection, thus eliminating the problem of the false-positive and false-negative results which affects traditional methods for detection of circulating antibodies

    The Intersection of Interfacial Forces and Electrochemical Reactions

    Get PDF
    We review recent developments in experimental techniques that simultaneously combine measurements of the interaction forces or energies between two extended surfaces immersed in electrolyte solutions—primarily aqueous—with simultaneous monitoring of their (electro)chemical reactions and controlling the electrochemical surface potential of at least one of the surfaces. Combination of these complementary techniques allows for simultaneous real time monitoring of angstrom level changes in surface thickness and roughness, surface–surface interaction energies, and charge and mass transferred via electrochemical reactions, dissolution, and adsorption, and/or charging of electric double layers. These techniques employ the surface forces apparatus (SFA) combined with various “electrochemical attachments” for in situ measurements of various physical and (electro)chemical properties (e.g., cyclic voltammetry), optical imaging, and electric potentials and currents generated naturally during an interaction, as well as when electric fields (potential differences) are applied between the surfaces and/or solution—in some cases allowing for the chemical reaction equation to be unambiguously determined. We discuss how the physical interactions between two different surfaces when brought close to each other (<10 nm) can affect their chemistry, and suggest further extensions of these techniques to biological systems and simultaneous in situ spectroscopic measurements for chemical analysis

    Valeur diagnostique des différentes formes parasitaires dans la Trypanosomose américaine expérimentale en immuno-fluorescence chez la Souris

    No full text
    L’Immuno-fluorescence indirecte a permis de détecter les anticorps contre les formes de culture et contre les formes sanguines de Trypanosoma cruzi chez la souris, et d’effectuer simultanément une comparaison. Il n’a pas été observé de différences significatives des taux pour les différentes formes parasitaires

    Theory of orthogonal interactions of CO molecules on a one-dimensional substrate

    Get PDF
    A minimal model based on density-functional theory is proposed and solved to explain the unusual chemisorption properties of carbon-monooxide (CO) molecules on Cu(110)-(2 × 1)-O quasi-one-dimensional (1D) surface reported in Feng. The striking features of CO adsorption include (1) the strong lifting of the host Cu atom by 1 Å, and (2) the highly anisotropic CO-CO interaction leading to self-assembly into a nanograting structure. Our model implies that the 1D nature of the surface band is the key to these two features. We illustrate how formation of a chemical bond through specific orbital interactions between an adsorbate and 1D dispersive states of the substrate can impact the surface geometrical and electronic structure. © 2012 American Physical Society.We thank DOE-BES Division of Chemical Sciences, Geosciences, and Biosciences for support through Grant No. DE-FG02-09ER16056, W. M. Keck foundation, Ministerio de Ciencia e Innovación (Grant No. FIS2010-19609-C02-00) and G.V.-UPV/EHU (Grant No. IT-366-07) for financial support.Peer Reviewe
    corecore