61 research outputs found

    Optimal bounds for a colorful Tverberg--Vrecica type problem

    Full text link
    We prove the following optimal colorful Tverberg-Vrecica type transversal theorem: For prime r and for any k+1 colored collections of points C^l of size |C^l|=(r-1)(d-k+1)+1 in R^d, where each C^l is a union of subsets (color classes) C_i^l of size smaller than r, l=0,...,k, there are partition of the collections C^l into colorful sets F_1^l,...,F_r^l such that there is a k-plane that meets all the convex hulls conv(F_j^l), under the assumption that r(d-k) is even or k=0. Along the proof we obtain three results of independent interest: We present two alternative proofs for the special case k=0 (our optimal colored Tverberg theorem (2009)), calculate the cohomological index for joins of chessboard complexes, and establish a new Borsuk-Ulam type theorem for (Z_p)^m-equivariant bundles that generalizes results of Volovikov (1996) and Zivaljevic (1999).Comment: Substantially revised version: new notation, improved results, additional references; 12 pages, 2 figure

    Membrane Selectivity Determines Energetic Losses for Ion Transport in Bioelectrochemical Systems

    Get PDF
    Ion transport through ion exchange membranes in Bioelectrochemical Systems (BESs) is different from other electrochemical cells as a result of the complex nature of the electrolyte, as the electrolytes in BESs contain many other cations and anions than H + and OH − . Moreover, these other cations and anions are generally present in high concentrations and therefore determine the ion transport through the membrane. In this work, we provide a theoretical framework for understanding ion transport across ion exchange membranes in BESs. We show that the transport of cations and anions other than H + and OH − determines the pH gradient between anode and cathode, and on top of that, also determines the membrane potential. Experimental data for microbial electrolysis cells with cation and anion exchange membranes are used to support the theoretical framework. In case of cation exchange membranes, the total potential loss consists of both the pH gradient and the concentration gradient of other cations, while in case of anion exchange membranes, the total potential loss is lower because part of the pH gradient loss can be recovered at the membrane. The presented work provides a better theoretical understanding of ion transport through ion exchange membranes in general and in BESs specifically

    An Improved Multi-objective Algorithm for the Urban Transit Routing Problem

    Get PDF
    The determination of efficient routes and schedules in public transport systems is complex due to the vast search space and multi- ple constraints involved. In this paper we focus on the Urban Transit Routing Problem concerned with the physical network design of pub- lic transport systems. Historically, route planners have used their local knowledge coupled with simple guidelines to produce network designs. Several major studies have identified the need for automated tools to aid in the design and evaluation of public transport networks. We propose a new construction heuristic used to seed a multi-objective evolutionary al- gorithm. Several problem specific mutation operators are then combined with an NSGAII framework leading to improvements upon previously published results

    The European TeleCheck-AF project on remote app-based management of atrial fibrillation during the COVID-19 pandemic: Centre and patient experiences

    Get PDF
    Aims: TeleCheck-AF is a multicentre international project initiated to maintain care delivery for patients with atrial fibrillation (AF) during COVID-19 through teleconsultations supported by an on-demand photoplethysmography-based heart rate and rhythm monitoring app (FibriCheck® ). We describe the characteristics, inclusion rates and experiences from participating centres according the TeleCheck-AF infrastructure as well as characteristics and experiences from recruited patients.Methods: Three surveys exploring centre characteristics (n=25), centre experiences (n=23) and patient experiences (n=826) were completed. Self-reported patient characteristics were obtained from the app.Results: Most centres were academic (64%) and specialized public cardiology/district hospitals (36%). Majority of centres had AF outpatient clinics (64%) and only 36% had AF ablation clinics. The time required to start patient inclusion and total number of included patients in the project was comparable for centres experienced (56%) or inexperienced in mHealth use. Within 28 weeks, 1930 AF patients were recruited, mainly for remote AF control (31% of patients) and AF ablation follow-up (42%). Average inclusion rate was highest during the lockdown restrictions and reached a steady state at a lower level after easing the restrictions (188 vs 52 weekly recruited patients). Majority (>80%) of the centres reported no problems during the implementation of the TeleCheck-AF approach. Recruited patients (median age 64 [55-71], 62% male) agreed that the FibriCheck® app was easy to use (94%).Conclusions: Despite different health care settings and mHealth experiences, the TeleCheck-AF approach could be set up within an extremely short time and easily used in different European centres during COVID-19

    Clinical trials treating focal segmental glomerulosclerosis should measure patient quality of life

    Get PDF
    Optimal therapy of patients with steroid-resistant primary focal segmental glomerulosclerosis (FSGS) remains controversial. This report describes the initial study design, baseline characteristics, and quality of life of patients enrolled in the FSGS Clinical Trial, a large multicenter randomized study of this glomerulopathy comparing a 12-month regimen of cyclosporine to the combination of mycophenolate mofetil and oral dexamethasone. Patients with age ranging 2–40 years, with an estimated glomerular filtration rate >40 ml/min per 1.73 m2, a first morning urine protein-to-creatinine ratio over one, and resistant to corticosteroids were eligible. The primary outcome was complete or partial remission of proteinuria over 52 weeks after randomization. In all, 192 patients were screened, of whom 138 were randomized for treatment. Ethnic distributions were 53 black, 78 white, and 7 other. By self- or parent-proxy reporting, 26 of the 138 patients were identified as Hispanic. The baseline glomerular filtration rate was 112.4 (76.5, 180.0) ml/min per 1.73 m2, and urine protein was 4.0 (2.1, 5.3) g/g. Overall, the quality of life of the patients with FSGS was lower than healthy controls and similar to that of patients with end-stage renal disease. Thus, the impact of FSGS on quality of life is significant and this measurement should be included in all trials

    A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    Get PDF
    Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region

    An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    Get PDF
    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 degrees. recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7 sigma-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed

    Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory

    Get PDF
    We present a new method for probing the hadronic interaction models at ultrahigh energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air showers. Using the risetimes of the recorded signals, we define a new parameter, which we use to compare our observations with predictions from simulations. We find, first, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies. Second, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum Xmax for a sample of over 81,000 events extending from 0.3 to over 100 EeV. Above 30 EeV, the sample is nearly 14 times larger than what is currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of ?Xmaxcopyright is compared to simulations and interpreted in terms of the mean of the logarithmic mass. We find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition

    Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the \u2018ankle\u2019 at lg\u2061(E/eV)=18.5\u201319.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth

    The Pierre Auger Observatory status and latest results

    Get PDF
    The Pierre Auger Observatory, in Argentina, is the present flagship experiment studying ultrahigh-energy cosmic rays (UHECRs). Facing the challenge due to low cosmic-ray flux at the highest energies, the Observatory has been taking data for more than a decade, reaching an exposure of over 50 000 km2sr yr. The combination of a large surface detector array and fluorescence telescopes provides a substantial improvement in energy calibration and extensive air shower measurements, resulting in data of unprecedented quality. Moreover, the installation of a denser subarray has allowed extending the sensitivity to lower energies. Altogether, this contributes to provide important information on key questions in the UHECR field in the energy range from 0.1 EeV up to 100 EeV. A review of main results from the Pierre Auger Observatory is presented with a particular focus on the energy spectrum measurements, the mass composition studies, the arrival directions analyses, the search for neutral cosmic messengers, and the investigation of high-energy hadronic interactions. Despite this large amount of valuable results, the understanding of the nature of UHECRs and of their origin remains an open science case that the Auger collaboration is planning to address with the AugerPrime project to upgrade the Observatory
    • …
    corecore