127 research outputs found

    Recent Results from Jefferson Lab

    Get PDF
    Recent results on studies of the structure of nucleons and nuclei in the regime of strong interaction QCD are discussed. Use of high current polarized electron beams, polarized targets, and recoil polarimeters, in conjunction with modern spectrometers and detector instrumentation allow much more detailed studies of nucleon and nuclear structure than has been possible in the past. The CEBAF accelerator at Jefferson Lab was build to study the internal structure of hadrons in a regime where confinement is important and strong interaction QCD is the relevant theory. I discuss how the first experiments already make significant contributions towards an improved understanding of hadronic structure.Comment: Lecture presented at the International School of Nuclear Physics, Erice, Sicily, Italy, September 17 - 25, 199

    Status of the N* Program at Jefferson Lab

    Full text link
    Recent results from JLab on the electromagnetic excitation of nucleon resonances are presented, and confronted with theoretical predictions. Preliminary data in the search for undiscovered states are discussed as well.Comment: 7 pages, 11 figures, talk presented at Electron-Nucleus Scattering VII, Elba, June 24-28,2002, added reference in section 2 and section 4.1, corrected misleading typographical error in section 4.

    The Jlab Upgrade - Studies of the Nucleon with CLAS12

    Full text link
    An overview is presented on the program to study the nucleon structure at the 12 GeV JLab upgrade using the CLAS12 detector. The focus is on deeply virtual exclusive processes to access the generalized parton distributions, semni-inclusive processes to study transverse momentum dependent distribution functions, and inclusive spin structure functions and resonance transition form factors at high Q^2 and with high precision.Comment: 7 pages, 12 figures, NSTAR 2007 conference, Bonn, September 5-8, 200

    Gravitational Approach to Tachyon Matter

    Get PDF
    We found a gravity solution of p+1 dimensional extended object with SO(p)xSO(9-p) symmetry which has zero pressure and zero dilaton charge. We expect that this object is a residual tachyon dust after tachyon condensation of brane and anti-brane system discussed by Sen, recently. We also discuss the Hawking temperature and some properties of this object.Comment: 14 pages, LaTeX, reference added and typos correcte

    Can black holes have Euclidean cores?

    Full text link
    The search for regular black hole solutions in classical gravity leads us to consider a core of Euclidean signature in the interior of a black hole. Solutions of Lorentzian and Euclidean general relativity match in such a way that energy densities and pressures of an isotropic perfect fluid form are everywhere finite and continuous. Although the weak energy condition cannot be satisfied for these solutions in general relativity, it can be when higher derivative terms are added. A numerical study shows how the transition becomes smoother in theories with more derivatives. As an alternative to the Euclidean core, we also discuss a closely related time dependent orbifold construction with a smooth space-like boundary inside the horizon.Comment: 14 pages with figures, version to appear in PR

    Statistique mensuelle de la viande. 1968 N° 4 APRIL-AVRIL = Monthly statistiques of meat. 1968 No. 4 April

    Get PDF
    In high energy experiments such as active beam dump searches for rare decays and missing energy events, the beam purity is a crucial parameter. In this paper we present a technique to reject heavy charged particle contamination in the 100 GeV electron beam of the H4 beam line at CERN SPS. The method is based on the detection with BGO scintillators of the synchrotron radiation emitted by the electrons passing through a bending dipole magnet. A 100 GeV pi- beam is used to test the method in the NA64 experiment resulting in a suppression factor of 10−5 while the efficiency for electron detection is 95%. The spectra and the rejection factors are in very good agreement with the Monte Carlo simulation. The reported suppression factors are significantly better than previously achieved.ISSN:0168-9002ISSN:1872-957

    Electroexcitation of nucleon resonances

    Full text link
    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13}, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.Comment: 70 pages, 46 figures, will appear in Progress in Particle and Nuclear Physics, v.67, p.1, 201

    Spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2

    Get PDF
    We present a precise measurement of the deuteron longitudinal spin asymmetry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1 GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.Comment: 17 pages, 10 figure

    Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV

    Full text link
    Two-particle correlations of direct photons were measured in central 208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was extracted from the correlation strength and compared to theoretical calculations.Comment: 5 pages, 4 figure

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure
    corecore