69 research outputs found

    Unruh quantization in presence of a condensate

    Full text link
    We have shown that the Unruh quantization scheme can be realized in Minkowski spacetime in the presence of Bose-Einstein condensate containing infinite average number of particles in the zero boost mode and located basically inside the light cone. Unlike the case of an empty Minkowski spacetime the condensate provides the boundary conditions necessary for the Fulling quantization of the part of the field restricted only to the Rindler wedge of Minkowski spacetime.Comment: 4 page

    An example of a uniformly accelerated particle detector with non-Unruh response

    Get PDF
    We propose a scalar background in Minkowski spacetime imparting constant proper acceleration to a classical particle. In contrast to the case of a constant electric field the proposed scalar potential does not create particle-antiparticle pairs. Therefore an elementary particle accelerated by such field is a more appropriate candidate for an "Unruh-detector" than a particle moving in a constant electric field. We show that the proposed detector does not reveal the universal thermal response of the Unruh type.Comment: 12 pages, 1 figur

    Analysis of CLAS data on double charge pion electroproduction

    Full text link
    Recent developments in phenomenological analysis of the CLAS data on 2π\pi electroproduction are presented. The contributions from isobar channels and P11(1440)P_{11}(1440), D13(1520)D_{13}(1520) electrocouplings at Q2Q^{2} from 0.25 to 0.6 GeV2^2 were determined from the analysis of comprehensive data on differential and fully integrated 2π\pi cross sections. Experiment Numbers: E94-005 Group: Hall BComment: Paper compiled for NSTAR2007 meetin

    Quantum field aspect of Unruh problem

    Get PDF
    It is shown using both conventional and algebraic approach to quantum field theory that it is impossible to perform quantization on Unruh modes in Minkowski spacetime. Such quantization implies setting boundary condition for the quantum field operator which changes topological properties and symmetry group of spacetime and leads to field theory in two disconnected left and right Rindler spacetimes. It means that "Unruh effect" does not exist.Comment: LaTeX, 13 pages, 1 figur

    Long- and short-term earthquake prediction in Kamchatka

    Get PDF
    This paper presents the results of long- and short-term earthquake prediction obtained during 1971–1974. They can be summarized as follows: The map of long-term prediction for the Kurile—Kamchatka zone compiled in 1965 and supplemented in 1972 by S.A. Fedotov is in good agreement (in four of four possible cases) with recorded seismicity. The results obtained allow us to suppose that the areas for which the log (Ep/Es) of small earthquakes is low may be the areas of future large earthquakes. Prediction of active periods for the Kamchatka earthquakes with M > 7 has been made on the basis of studying the correlation of seismicity with the lunar tide with a 18.6-year period. A possibility has been found for using the phenomenon of “induced foreshocks” for earthquake prediction, i.e., when a large remote earthquake induces small preceding events in the zone of preparation of a large earthquake. The following three methods were used for operative short-term prediction of the time and place of future earthquakes with M > 5.5. 1.(1) Use of specific electrotelluric field anomalies, from 5 to 20 days in duration, which are recorded by a specially designed network of stations. 2.(2) Method of Vp/Vs anomalies. The anomalously high and low Vp/Vs values for a seismic station point to the possibility of large earthquakes near the latter. 3.(3) The earthquake statistics method described by Fedotov et al. in 1972. Short-term seismic prediction is being made twice a week in two versions: Forecast I (for the whole of Kamchatka) and Forecast II (for each of six overlapping segments of the Kamchatka seismic zone). This paper discusses the results of successful testing of short-term earthquake prediction during two years. During the “alarm” periods the probability of large earthquakes is double the average. Paper presented at the Symposium on Earthquake Forerunners Searching, Tashkent, May 26–June 1, 1974

    Electroexcitation of nucleon resonances

    Full text link
    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13}, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.Comment: 70 pages, 46 figures, will appear in Progress in Particle and Nuclear Physics, v.67, p.1, 201

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830ϵ0.9430.830\leq \epsilon\leq 0.943

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure
    corecore