782 research outputs found

    El Segmento de Subducción Subhorizontal de los Andes Centrales Argentinos-Chilenos

    Get PDF
    The westem active margin of South America, characterized by the Andes mountain chain, shows a high variability along strike. Different segments have a diverse topography, cmstal roots and surface geology. Among these segments the flat-slab segment of the southem Central Andes, depicts a remarkable geology between 28" and 33"s. The lack of an active volcanism due to the subhorizontal subduction and the strong coupling between the Nazca plate and the South America plate, have produced the highest mountains in the Andes, with mount Aconcagua, almost 7,000 m a.s.1. This segment is also characterized by the thin-skinned fold and thrust belt of Precordillera, and the Sierras Pampeanas, broken foreland basement blocks uplifted during the Andean orogeny. These characteristics controlled the excellent exposures of this amagmatic segment, without a late Cenozoic volcanic cover along the axial part of the Principal Cordillera. Therefore, most of the stmctures that produced the present uplift can be identified. On that bases, severa1 conceptual models have tied to explain the deep stnicture of the orogen, although the lack of deep seismic information hinders the evaluation of the mechanisms that produced the present orogenic shortening. A deep seismic reflection sounding will provide information to answer many of the questions that relate subduction to mountain building in one of the best sections of an Andean-type orogen

    Hadron multiplicity induced by top quark decays at the LHC

    Full text link
    The average charged hadron multiplicities induced by top quark decays are calculated in pQCD at LHC energies. Different modes of top production are considered. Proposed measurements can be used as an additional test of pQCD calculations independent on a fragmentation model.Comment: 12 pages, 12 figures, to be published elsewher

    Higher Dimensional Classical W-Algebras

    Full text link
    Classical WW-algebras in higher dimensions are constructed. This is achieved by generalizing the classical Gel'fand-Dickey brackets to the commutative limit of the ring of classical pseudodifferential operators in arbitrary dimension. These WW-algebras are the Poisson structures associated with a higher dimensional version of the Khokhlov-Zabolotskaya hierarchy (dispersionless KP-hierarchy). The two dimensional case is worked out explicitly and it is shown that the role of DiffS(1)S(1) is taken by the algebra of generators of local diffeomorphisms in two dimensions.Comment: 22 pages, Plain TeX, KUL-TF-92/19, US-FT/6-9

    Medium-modified average multiplicity and multiplicity fluctuations in jets

    Full text link
    The energy evolution of average multiplicities and multiplicity fluctuations in jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates through the quark gluon plasma. The leading contribution of the standard production of soft hadrons is enhanced by a factor Ns\sqrt{N_s} while next-to-leading order (NLO) corrections are suppressed by 1/Ns1/\sqrt{N_s}, where the parameter Ns>1N_s>1 accounts for the induced-soft gluons in the medium. Our results for such global observables are cross-checked and compared with their limits in the vacuum.Comment: 8 pages and 4 figures. Version to be published in EPJ

    Controls on intermontane basin filling, isolation and incision on the margin of the Puna Plateau, NW Argentina (similar to 23 degrees S)

    Get PDF
    Intermontane basins are illuminating stratigraphic archives of uplift, denudation and environmental conditions within the heart of actively growing mountain ranges. Commonly, however, it is difficult to determine from the sedimentary record of an individual basin whether basin formation, aggradation and dissection were controlled primarily by climatic, tectonic or lithological changes and whether these drivers were local or regional in nature. By comparing the onset of deposition, sediment-accumulation rates, incision, deformation, changes in fluvial connectivity and sediment provenance in two interrelated intermontane basins, we can identify diverse controls on basin evolution. Here, we focus on the Casa Grande basin and the adjacent Humahuaca basin along the eastern margin of the Puna Plateau in northwest Argentina. Underpinning this analysis is the robust temporal framework provided by U-Pb geochronology of multiple volcanic ashes and our new magnetostratigraphical record in the Humahuaca basin. Between 3.8 and 0.8 Ma, similar to 120 m of fluvial and lacustrine sediments accumulated in the Casa Grande basin as the rate of uplift of the Sierra Alta, the bounding range to its east, outpaced fluvial incision by the Rio Yacoraite, which presently flows eastward across the range into the Humahuaca basin. Detrital zircon provenance analysis indicates a progressive loss of fluvial connectivity from the Casa Grande basin to the downstream Humahuaca basin between 3 and 2.1 Ma, resulting in the isolation of the Casa Grande basin from 2.1 Ma to \u3c 1.7 Ma. This episode of basin isolation is attributed to aridification due to the uplift of the ranges to the east. Enhanced aridity decreased sediment supply to the Casa Grande basin to the point that aggradation could no longer keep pace with the rate of the surface uplift at the outlet of the basin. Synchronous events in the Casa Grande and Humahuaca basins suggest that both the initial onset of deposition above unconformities at similar to 3.8 Ma and the re-establishment of fluvial connectivity at similar to 0.8 Ma were controlled by climatic and/or tectonic changes affecting both basins. Reintegration of the fluvial network allowed subsequent incision in the Humahuaca basin to propagate upstream into the Casa Grande basin

    Integrable twists in AdS/CFT

    Get PDF
    A class of marginal deformations of four-dimensional N=4 super Yang-Mills theory has been found to correspond to a set of smooth, multiparameter deformations of the S^5 target subspace in the holographic dual on AdS_5 x S^5. We present here an analogous set of deformations that act on global toroidal isometries in the AdS_5 subspace. Remarkably, certain sectors of the string theory remain classically integrable in this larger class of so-called gamma-deformed AdS_5 x S^5 backgrounds. Relying on studies of deformed su(2)_gamma models, we formulate a local sl(2)_gamma Lax representation that admits a classical, thermodynamic Bethe equation (based on the Riemann-Hilbert interpretation of Bethe's ansatz) encoding the spectrum in the deformed AdS_5 geometry. This result is extended to a set of discretized, asymptotic Bethe equations for the twisted string theory. Near-pp-wave energy spectra within sl(2)_gamma and su(2)_gamma sectors provide a useful and stringent test of such equations, demonstrating the reliability of this technology in a wider class of string backgrounds. In addition, we study a twisted Hubbard model that yields certain predictions of the dual beta-deformed gauge theory.Comment: v2: references and clarifications added, 46 page

    Bound State Transfer Matrix for AdS5 x S5 Superstring

    Get PDF
    We apply the algebraic Bethe ansatz technique to compute the eigenvalues of the transfer matrix constructed from the general bound state S-matrix of the light-cone AdS5 x S5 superstring. This allows us to verify certain conjectures on the quantum characteristic function, and to extend them to the general case.Comment: 36 pages, LaTeX, v2: typos corrected, ref added; v3: accepted for publication in JHEP

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Planar N=4 Gauge Theory and the Hubbard Model

    Full text link
    Recently it was established that a certain integrable long-range spin chain describes the dilatation operator of N=4 gauge theory in the su(2) sector to at least three-loop order, while exhibiting BMN scaling to all orders in perturbation theory. Here we identify this spin chain as an approximation to an integrable short-ranged model of strongly correlated electrons: The Hubbard model.Comment: 35 pages, 2 figures; v2: typos and references fixed, published versio
    corecore