41 research outputs found

    Acceleration of ultra-thin electron layer. Analytical treatment compared with 1D-PIC simulation

    Full text link
    In this paper, we apply an analytical model [V.V. Kulagin et al., Phys. Plasmas 14,113101 (2007)] to describe the acceleration of an ultra-thin electron layer by a schematic single-cycle laser pulse and compare with one-dimensional particle-in-cell (1D-PIC) simulations. This is in the context of creating a relativistic mirror for coherent backscattering and supplements two related papers in this EPJD volume. The model is shown to reproduce the 1D-PIC results almost quantitatively for the short time of a few laser periods sufficient for the backscattering of ultra-short probe pulses.Comment: 4 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal

    The reflectivity of relativistic ultra-thin electron layers

    Full text link
    The coherent reflectivity of a dense, relativistic, ultra-thin electron layer is derived analytically for an obliquely incident probe beam. Results are obtained by two-fold Lorentz transformation. For the analytical treatment, a plane uniform electron layer is considered. All electrons move with uniform velocity under an angle to the normal direction of the plane; such electron motion corresponds to laser acceleration by direct action of the laser fields, as it is described in a companion paper. Electron density is chosen high enough to ensure that many electrons reside in a volume \lambda_R^3, where \lambda_R is the wavelength of the reflected light in the rest frame of the layer. Under these conditions, the probe light is back-scattered coherently and is directed close to the layer normal rather than the direction of electron velocity. An important consequence is that the Doppler shift is governed by \gamma_x=(1-(V_x/c)^2)^{-1/2} derived from the electron velocity component V_x in normal direction rather than the full \gamma-factor of the layer electrons.Comment: 7 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Production of frozen ingots in rotating moulds

    No full text
    22.00; Translated from Russian (Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 1988 (5) p. 49-53)SIGLEAvailable from British Library Document Supply Centre- DSC:9022.06(BISI-Trans--26873)T / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore