4 research outputs found

    Electron structure and electron–phonon interaction in the strongly correlated electron system of cuprates

    No full text
    The generalized tight-binding method presents a practical realization of the scheme that describes quasiparticles in strongly correlated electron system and consists of exact intra-cell diagonalization of the model Hamiltonian and perturbative treatment of the inter-cell hoppings. In present paper this method and its ab initio modification applied to undoped and weakly doped HTSC cuprates. Results are in very good agreement with the experimental ARPES data on various compounds. Starting with multiband p—d model the realistic effective low-energy Hamiltonian of strongly correlated electrons interacting with spin fluctuations and phonons is derived both for hole and electron doped systems. Without electron—phonon interaction the pure magnetic mechanism of pairing does not provide the correct value of Tc even for single-layer La₂₋xSrxCuO₄ and Nd₂₋xCexCuO₄

    Resonance peak in underdoped cuprates

    Full text link
    The magnetic susceptibility measured in neutron scattering experiments in underdoped YBa2_2Cu3_3O7y_{7-y} is interpreted based on the self-consistent solution of the t-J model of a Cu-O plane. The calculations reproduce correctly the frequency and momentum dependencies of the susceptibility and its variation with doping and temperature in the normal and superconducting states. This allows us to interpret the maximum in the frequency dependence -- the resonance peak -- as a manifestation of the excitation branch of localized Cu spins and to relate the frequency of the maximum to the size of the spin gap. The low-frequency shoulder well resolved in the susceptibility of superconducting crystals is connected with a pronounced maximum in the damping of the spin excitations. This maximum is caused by intense quasiparticle peaks in the hole spectral function for momenta near the Fermi surface and by the nesting.Comment: 9 pages, 6 figure
    corecore