45 research outputs found
Modeling of internal tides in fjords
A previous model for the distribution of internal tides above irregular topography is generalized to include arbitrary stratification and a radiation condition at the open boundary. Thanks to a small amount of dissipation, this model remains valid in the presence of resonant internal tides, leading to intense wave-energy beams. An application to a Norwegian fjord correctly reproduces the observed energy pattern consisting of two beams both originating at the 60-meter deep entrance sill and extending in-fjord, one upward toward the surface, the other downward toward the bottom. After correction for the varying width of the fjord, the observed and modelled energy levels are in good agreement, especially in the upper levels where energy is the greatest. Furthermore, the substantial phase lag between these two energy beams revealed by the observations is correctly reproduced by the model. Finally, a third and very narrow energy spike is noted in the model at the level of a secondary bump inward of the sill. This beam is missed by the current meter data, because the current meters were placed only at a few selected depths. But an examination of the salinity profiles reveals a mixed layer at approximately the same depth. The explanation is that high-wave energy leads to wave breaking and vigorous mixing. The model\u27s greatest advantage is to provide the internal-tide energy distribution throughout the fjord. Discrepancies between observations and model are attributed to coarse vertical resolution in the vicinity of the sill and to unaccounted cross-fjord variations
Analogues of the central point theorem for families with -intersection property in
In this paper we consider families of compact convex sets in
such that any subfamily of size at most has a nonempty intersection. We
prove some analogues of the central point theorem and Tverberg's theorem for
such families
Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912-2009)
The recently observed warming of west Spitsbergen fjords has led to anomalous sea-ice conditions and has implications for the marine ecosystem. We investigated long-term trends of maximum temperature of Atlantic Water (AW) in two west Spitsbergen fjords. The data set is composed of more than 400 oceanographic stations for Isfjorden and Grønfjorden (78.1°N), spanning from 1876 to 2009. Trends throughout the last century (1912–2009) indicate an increase of 1.9°C and 2.1°C in the maximum temperature during autumn for Isfjorden and Grønfjorden, respectively. A recent warming event in the beginning of the 21st century is found to be more than 1°C higher than the second warmest period in the time series. Mean sea-level pressure (MSLP) data from ERA-40 and ERA-Interim data sets produced by the European Centre for Medium-Range Weather Forecasts and mean temperature in the core of the West Spitsbergen Current (WSC) at the Sørkapp Section along 76.3°N were used to explain the variability of the maximum temperature. A correlation analysis confirmed previous findings, showing that variability in the oceanography of the fjords can be explained mainly by two external factors: AW temperature variability in the WSC and regional patterns of the wind stress field. To take both processes into consideration, a multiple regression model accounting for temperature in the WSC core and MSLP over the area was developed. The predicted time series shows a reasonable agreement with observed maxima temperature in Isfjorden for the period 1977–2009 (N=24), with a statistically significant multiple correlation coefficient of 0.60 (R2=0.36) at P<0.05.publishedVersio
Quantum Channels with Memory
We present a general model for quantum channels with memory, and show that it
is sufficiently general to encompass all causal automata: any quantum process
in which outputs up to some time t do not depend on inputs at times t' > t can
be decomposed into a concatenated memory channel. We then examine and present
different physical setups in which channels with memory may be operated for the
transfer of (private) classical and quantum information. These include setups
in which either the receiver or a malicious third party have control of the
initializing memory. We introduce classical and quantum channel capacities for
these settings, and give several examples to show that they may or may not
coincide. Entropic upper bounds on the various channel capacities are given.
For forgetful quantum channels, in which the effect of the initializing memory
dies out as time increases, coding theorems are presented to show that these
bounds may be saturated. Forgetful quantum channels are shown to be open and
dense in the set of quantum memory channels.Comment: 21 pages with 5 EPS figures. V2: Presentation clarified, references
adde
Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – An indicator for climate change in the European Arctic
Isfjorden, a broad Arctic fjord in western Spitsbergen, has shown significant changes in hydrography and inflow of Atlantic Water (AW) the last decades that only recently have been observed in the Arctic Ocean north of Svalbard. Variability and trends in this fjord’s climate and circulation are therefore analysed from observational and reanalysis data during 1987 to 2017. Isfjorden experienced a shift in summer ocean structure in 2006, from AW generally in the bottom layer to AW (with increasing thickness) higher up in the water column. This shift, and a concomitant shift to less fast ice in Isfjorden are linked to positive trends in the mean sea surface temperature (SST) and volume weighted mean temperature (VT) in winter (SSTw/VTw: 0.7 ± 0.1/0.9 ± 0.3 °C 10 yr−1) and summer (SSTS/VTS: 0.7 ± 0.1/0.6 ± 0.1 °C 10 yr−1). Hence, the local mean air temperature shows similar trends in winter (1.9 ± 0.4 °C 10 yr−1) and summer (0.7 ± 0.1 °C 10 yr−1). Positive trends in volume weighted mean salinity in winter (0.21 ± 0.06 10 yr−1) and summer (0.07 ± 0.05 10 yr−1) suggest increased AW advection as a main reason for Isfjorden’s climate change. Local mean air temperature correlates significantly with sea ice cover, SST, and VT, revealing the fjord’s impact on the local terrestrial climate. In line with the shift in summer ocean structure, Isfjorden has changed from an Arctic type fjord dominated by Winter Deep and Winter Intermediate thermal and haline convection, to a fjord dominated by deep thermal convection of Atlantic type water (Winter Open). AW indexes for the mouth and Isfjorden proper show that AW influence has been common in winter over the last decade. Alternating occurrence of Arctic and Atlantic type water at the mouth mirrors the geostrophic control imposed by the Spitsbergen Polar Current (carrying Arctic Water) relative to the strength of the Spitsbergen Trough Current (carrying AW). During high AW impact events, Atlantic type water propagates into the fjord according to the cyclonic circulation along isobaths corresponding to the winter convection. Tides play a minor role in the variance in the currents, but are important in the side fjords where exchange with the warmer Isfjorden proper occurs in winter. This study demonstrates that Isfjorden and its ocean climate can be used as an indicator for climate change in the Arctic Ocean. The used methods may constitute a set of helpful tools for future studies also outside the Svalbard Archipelago.publishedVersio
Direct measurements of volume transports through Fram Strait
Heat and freshwater transports through Fram Strait are understood to have a significant influence on the hydrographic conditions in the Arctic Ocean and on water mass modifications in the Nordic seas. To determine these transports and their variability reliable estimates of the volume transport through the strait are required. Current meter moorings were deployed in Fram Strait from September 1997 to September 1999 in the framework of the EU MAST III Variability of Exchanges in the Northern Seas programme. The monthly mean velocity fields reveal marked velocity variations over seasonal and annual time scales, and the spatial structure of the northward flowing West Spitsbergen Current and the southward East Greenland Current with a maximum in spring and a minimum in summer. The volume transport obtained by averaging the monthly means over two years amounts to 9.5 ± 1.4 Sv to the north and 11.1 ± 1.7 Sv to the south (1 Sv = 106 m3s?1). The West Spitsbergen Current has a strong barotropic and a weaker baroclinic component; in the East Greenland Current barotropic and baroclinic components are of similar magnitude. The net transport through the strait is 4.2 ± 2.3 Sv to the south. The obtained northward and southward transports are significantly larger than earlier estimates in the literature; however, within its range of uncertainty the balance obtained from a two year average is consistent with earlier estimates
Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997
The water mass distribution in northern Fram
Strait and over the Yermak Plateau in summer 1997 is described using CTD data
from two cruises in the area. The West Spitsbergen Current was found to split,
one part recirculated towards the west, while the other part, on entering the
Arctic Ocean separated into two branches. The main inflow of Atlantic Water
followed the Svalbard continental slope eastward, while a second, narrower,
branch stayed west and north of the Yermak Plateau. The water column above the
southeastern flank of the Yermak Plateau was distinctly colder and less saline
than the two inflow branches. Immediately west of the outer inflow branch
comparatively high temperatures in the Atlantic Layer suggested that a part of
the extraordinarily warm Atlantic Water, observed in the boundary current in the
Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin,
toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep
and comparably saline, similar to what has recently been observed in the
interior Eurasian Basin. Closer to the Greenland continental slope the salinity
of the upper layer became much lower, and the temperature maximum of the
Atlantic Layer was occasionally below
0.5 °C, indicating water masses mainly derived from the Canadian Basin. This
implies that the warm pulse of Atlantic Water had not yet made a complete
circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen
Current recirculating within the strait did not extend as far towards Greenland
as in the 1980s, leaving a broader passage for waters from the Atlantic and
intermediate layers, exiting the Arctic Ocean. A possible interpretation is that
the circulation pattern alternates between a strong recirculation of the West
Spitsbergen Current in the strait, and a larger exchange of Atlantic Water
between the Nordic Seas and the inner parts of the Arctic Ocean.Key words: Oceanography: general (Arctic and Antarctic
oceanography; water masses) - Oceanography: physical (general circulation