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Modeling of internal tides in fjords

by V. Tverberg'?, B. Cushman-Roisin®’ and H. Svendsen'

ABSTRACT

A previous model for the distribution of internal tides above irregular topography is
generalized to include arbitrary stratification and a radiation condition at the open boundary.
Thanks to a small amount of dissipation, this model remains valid in the presence of resonant
internal tides, leading to intense wave-energy beams.

An application to a Norwegian fjord correctly reproduces the observed energy pattern
consisting of two beams both originating at the 60-meter deep entrance sill and extending
in-fjord, one upward toward the surface, the other downward toward the bottom. After
correction for the varying width of the fjord, the observed and modelled energy levels are in
good agreement, especially in the upper levels where energy is the greatest. Furthermore, the
substantial phase lag between these two energy beams revealed by the observations is correctly
reproduced by the model. Finally, a third and very narrow energy spike is noted in the model at
the level of a secondary bump inward of the sill. This beam is missed by the current meter data,
because the current meters were placed only at a few selected depths. But an examination of
the salinity profiles reveals a mixed layer at approximately the same depth. The explanation is
that high-wave energy leads to wave breaking and vigorous mixing,

The model’s greatest advantage is to provide the internal-tide energy distribution through-
out the fjord. Discrepancies between observations and model are attributed to coarse vertical
resolution in the vicinity of the sill and to unaccounted cross-fjord variations.

1. Introduction

A primary generation mechanism of internal waves in the ocean is the interaction
of the tide with topographic features. The situation arises when the open-ocean
surface tide encounters the shelf break (Rattray, 1960; Prinsenberg and Rattray,
1975; deWitt et al., 1986; Pingree and New, 1989) or a seamount protruding into the
main thermocline (Golubev and Cherkesov, 1986). The propagation of the internal-
tide energy from its place of origin is further affected by topographic irregularities.
For example, Gardner (1989) recently demonstrated that a pronounced focusing of
internal tides is responsible for the observed resuspension of sediments in the
Baltimore Canyon.
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Norwegian fjords are prime sites of energetic internal waves. Indeed, not only are
they located along the North Atlantic Ocean where the tide is relatively large, but
their morphology marked by steep sills and abrupt slopes is also critical in generating
and diffracting internal tides. Since large internal waves lead to wave breaking and
wave breaking to mixing and dispersion of nutrients, the determination of the
internal-tide energy distribution is particularly important in Norwegian fjords where
aquaculture is extensive.

Traditional models can be classified in two categories. One class exploits the
technique of vertical-mode decomposition (Prinsenberg and Rattray, 1975; New,
1988; Pingree and New, 1989). Because vertical modes strictly exist only over
horizontal portions of the bottom, the topography in these models is restricted to
consist of only a few steps. Other traditional models (Wunsch, 1969; Baines, 1971,
1974; Sandstrom, 1976) and more recent applications (Craig, 1987; Vlasenko, 1987)
have taken advantage of the hyperbolic nature of the problem to obtain solutions via
a ray-tracing technique of one form or another. But, this approach typically requires
the construction of a rule or matrix relating the various reflection points along a
series of rays and becomes extremely cumbersome in the case of arbitrary topogra-
phy. This is why the above models are applicable only to systems with subcritical
slopes, with monotonic slopes or without facing supercritical slopes. Such restrictions
also avoid eventual cases of resonance, which may be quite common (Lewis and
Perkin, 1982; de Young and Pond, 1987). Breaking with this tradition are the
finite-difference models of Chuang and Wang (1981) and Cushman-Roisin et al.
(1989, hereafter referred to as CRTP). The former relies on a change of coordinates
that transforms the domain into a rectangle, which is subsequently divided along
evenly spaced grid points. In addition to the contamination of the results caused by
the discretization of mapping factors in such models (McCalpin, 1990), the transfor-
mation of coordinate involves the second derivative of the bottom profile. It follows
that applications must be restricted to bottom topographies with smooth profiles or
with known analytic expressions. The other, CRTP model overcomes these diffi-
culties by solving the problem on a rectangular grid in real space with the mesh
diagonals chosen to be aligned with the ray directions. The uneven bottom is
replaced by a stepped boundary that best approximates the actual topography, and
the hyperbolic system is converted into a parabolic set of equations amenable to a
convenient iterative method of solution. Furthermore, a dissipation term is intro-
duced to overcome eventual resonance. The advantages of this model are its ease of
application to arbitrary bottom topographies and its allowance for resonant patterns.

A fourth approach to the simulation of internal tides is to solve the time-
dependent primitive equations directly. The main advantage is the allowance for
nonlinear effects, such as the advection of internal waves by the oscillating currents
of the surface tide (Hibiya, 1986). In addition to a greater computer demand (which
translates into lower resolution), the need to specify proper open-boundary condi-
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tions is problematic. The specification of the streamfunction according to the
incoming surface tide (Hibiya, 1988) effectively reflects all internal modes and may
contaminate the entire solution, especially if the system is near resonance as is the
case of shallow-sill fjords.

In the original version (Cushman-Roisin et al, 1989), the CRTP model was
presented in its simplest form. Namely, the condition at the open boundary where
the surface tide enters the system did not allow outgoing internal-wave radiation but
instead reflected all internal waves, and the stratification was assumed uniform
(constant Brunt-Viisild frequency). In a nonuniform stratification, rays are re-
fracted (Lighthill, 1978, Section 4.5) and their travel times and points of reflection
are thus modified. [In the extreme case of a Brunt-Viisilé frequency dropping below
the tidal frequency such as at the base of a mixed layer, internal reflection occurs
(Cushman-Roisin and Svendsen, 1983).] Applications of the model to actual oceanic
systems obviously require that both of the above restrictions be lifted, and one
objective of the present paper is to do so.

The model extension proceeds by steps. First, the radiation boundary condition is
discussed in the case of uniform stratification for mathematical convenience. Then,
in the case of nonuniform stratification, a stretching of the vertical variable is
performed to align the diagonals of the rectangular grid with the local ray slopes.
[This vertical stretching is horizontally uniform and avoids the error contamination
discussed by McCalpin (1990).] Finally, the radiation boundary condition is revised
and implemented in the general case of nonuniform stratification.

After these modifications are implemented (Section 2), the model is applied to the
Skjomen fjord. A description of this fjord of North Norway and of the available data
is presented in Section 3, while the application of the model and the comparison of
the results with the data follow in Section 4. A high-energy layer revealed by the
model but missed by the current meter data (taken at other depths) is found to
correspond to a zone of mixing reflected in the erosion of the salinity profile. This
and other conclusions are summarized in Section 5.

2. The numerical model and its generalizations
a. The basic numerical model. The model developed in CRTP deals with tide-
generated internal gravity waves in a linearly stratified fluid without rotation. The
tidal frequency w sets the time dependence of the problem (proportional to
exp (—iwt)) and the classic equation for the streamfunction

Y Rl

_ — p—— = 1

PR 0 )
then describes the wave amplitude distribution. The coefficient ¢ = w/N, where N is
the constant Brunt-Viiséld frequency, defines the characteristic directions %c of this
hyperbolic equation.
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After replacement of § by the velocity components, u = —adi/dz and w = as/ax,
and scaling of the variables (x by 1/c, w by ¢), Eq. (1) is then expressed into two
equations

du ow Ju ow

a+az— ’E-’-E: (2a,b)

The characteristic slopes are now *1. Note that despite scaling, dimensions have
been retained. Next, an additional term related to vertical friction is introduced to
overcome singularities brought on by eventual resonance:

ou ow ow aw _ du

a—x+g=0,£+a=l}\§, (3a,b)
where / is the imaginary unit and A = v /w is a real, positive constant proportional to
the vertical viscosity v. To avoid a general diffusive effect on the waves, A <« H2is
required, where H, is a typical depth of the domain.

Finally, Egs. (3a,b) are transformed into a time-dependent dissipative system, the
solution of which evolves from any arbitrary velocity field to a steady-state solution
that satisfies (3a,b). To form the numerical system, two accessory functions are
introduced:

u ow ouw ow _ du

=5;+‘6—z‘,¢=5;+5;—1)\§, (4a,b)

and the two dissipative equations that complete the system with four unknowns and
four equations are:
ou d9x d9b aw ax b Iy
E=E+E,E=E+a—x+lhg. (4c,d)
The steady-state solution of (4a—d) satisfies (3a,b) if x = ¢ = 0 (Cushman-Roisin et
al., 1989). For numerical reasons, it is convenient to use a staggered grid on which the
characteristic directions follow the diagonals.

Resonance occurs in regions where complicated topographic features make the
characteristic rays close, after several reflections, onto themselves. If it were not for
the presence of the dissipative term, resonance would be manifested by infinite
values of 4 and w in the original problem (2a,b) or by nonzero residual values of x
and ¢ in the steady-state solution of (4a—d) (Cushman-Roisin et al., 1989).

The physical boundary conditions are easily implemented by letting horizontal
boundaries pass through w-grid points and vertical boundaries through u-grid points
so that the solid boundary conditions become w = 0 and u = 0, respectively. Along
the surface, the forcing from the external tide is implemented by setting the w-values
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to a constant (Craig, 1987). More precisely, if the surface elevation at the fjord
entrance obeys n = A sin wt, the vertical velocity at the surface is Aw cos wt, which
takes the form w = Aw in the present notation. Then, because the wavelength of the
surface tide is generally much longer than the fjord, this value can be taken uniformly
along the fjord. In the CRTP model, the boundary condition at the fjord entrance
required that the vertical velocity be equal to that of the external tide, namely linear
in z. Such boundary condition reflects the internal waves generated within the
domain. All the boundary conditions of x and ¢ are set to zero. The supplementary
boundary conditions required by the higher-order friction term are imposed as a
nonstress condition u, = O at the surface, and a nonslip condition # = 0 along
horizontal sections of the topography.

b. Radiation boundary condition with constant N°. The reason for introducing a
radiation condition at the entrance of the domain is to permit the outward propaga-
tion of the internal waves generated within the domain. This is done by adjusting the
boundary values to an analytical solution outside the entrance.

In the absence of any other information, it is assumed that the bottom outside the
domain is flat, with depth equal to that at the entrance, denoted H, and the analytical
method of normal modes can be used. Viscosity is not considered because resonance
is prohibited over a flat bottom, and thus the X terms remain small there. So, the
equations to be solved in the outer domain are (2a,b).

If the inner domain of interest extends from the entrance in the positive x-direc-
tion, the baroclinic mode solutions of (2a,b) containing only outgoing internal waves
in the negative x-direction are

nmz

H

nmx
exp (—i H

where n is a nonzero integer. Note that this solution satisfies not only the continuous,
partial-differential equations but also the second-order centered-difference equa-
tions on the staggered grid. The grid-mesh only limits the number of baroclinic
modes that can be resolved. This number is equal to the number of w-grid points in
the vertical excluding those on the boundaries, say N-1.

Under the long-wavelength approximation for the external tide (Craig, 1987), the
barotropic mode has a simple structure: u is independent of depth and linear in x,
while w is independent of x and varies linearly with depth from zero at the bottom to
the tidal amplitude, say 1, at the surface (z = H). The total outer solution (sum of the
barotropic and all possible outgoing baroclinic modes) is thus

u, = cos and w, =i sin

nmz _nTx
7P\ g

x N-1
u=u,- -+ Za,,cos
H n=1

nmz
I | €XP

- —

= (52)

: nm)
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Figure 1. The entrance area of the numerical domain, showing the region of the inner domain
where the outer solution is still valid.

“Z2 405 o sin [P " sb
w—H+ln=la,,sm 71| =i (5b)

Consider now the entrance area as depicted in Figure 1. The above solution
constructed to represent the wave field in the outer domain (left of x = 0, where the
bottom is flat) is also valid on the other side inside the triangular domain defined by
the entrance boundary, the surface and the diagonal ray extending from the bottom
at the entrance to the surface. Indeed, every point in this triangle can be connected
by two rays to the entrance line and hence the solution there is completely
determined by the outer solution. In particular, the u-values along the first column
inside the domain obey (5a).

The procedure now is to make use of these u; = u(x = A,z = 2jA — A) values to
express the w,, = w(x = 0,z = 2kA) values along the entrance, where A = H/2N is
the grid step. Eq. (5a) written atx = A and z = 2jA — A withj running from 1 to N
yields a set of N equations with N unknowns, viz. u, and the N — 1 values of a,’s. The
solution of this set of ordinary linear equations gives the expressions for the a,’s:

2 nw| & A o1
o= on 152 =

wy—u,+ 4

A H
where n ranges from 1 to N — 1. Since u, and A/H are constants, the corrcsponding
terms yield zero sums. Eq. (5b) written atx = 0 and z = 2kA with & running from 1 to
N — 1 then relates values of w at the entrance to those of u along the first column

n

cos T2
H

; (6)
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within the domain:

k N
YA 2 Aty 7
where the coefficients
2 inw\  [nmk 1\ nw
_—Eexp sin _N— Ccos -‘2‘ W (8)

can be calculated once and for all.

Eq. (7) can be implemented in the model as the radiation boundary condition at
the entrance of the fjord when the Brunt-Viisilad frequency is uniform. In practice,
the w-values at the entrance are updated according to (7) between every iteration of
Eqgs. (4a—d).

c. Arbitrary N*(z). In an arbitrarily stratified fluid, the coefficient ¢? in Eq. (1) is
continuously varying with z. To illustrate clearly how the model can be extended to
this more realistic case, the friction term is first excluded from the equations, and one
returns to Eq. (1). From this equation, it is readily seen that the characteristic
directions of the problem are still =c. But, the rays are now curves defined by
(Lighthill, 1978, Section 4.5)

: dz’
x=x0ij;c(T,). 9)

This last expression suggests the introduction of a new vertical variable, {, defined by
dz/c = d{ (Craig, 1988). In the x,{ frame of reference, the characteristics become
straight lines of slopes * 1, and, when { is substituted for z and friction is
reintroduced, the governing equations become

ou 1w ouw ow _ du
6_x+56_2;=0’ CG_C+3x l}\G_CJ (10a,b)
The derivation of the dissipative equations is done by applying the operator 4/dx to
(10a) and 1/c /3¢ to (10b) and adding the results to form the first equation, and
applying operator ¢ d/d{ to (10a) and 4/dx to (10b) and adding to form the second
equation. The system of differential equations to be solved in the case of arbitrary
c(C) is then

e Lw o w i

X = 6x+c(§) T & = c(l) T + pw — i\ Yk (11a,b)
du ax 1 ad aw ad ¥
i C(C) A c({)—+— ”‘3@7‘ (11c,d)
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In the above equations, the coefficients are c¢({) = w/N({) and A = vN,/w’ with © as
the tidal frequency, N ({) the Brunt-Viiséli frequency, v the viscosity parameter, and
N, a mean value of N({) such that X is constant. According to CRTP, the viscosity
parameter is required to be small (v < wH?Z where H, is a typical depth), and this
criterion is easily met. A solution of (11a-d) of the form exp (ot + imx + in{)

provides
. n*\  dc/d\»
o=~ |m*+n’£2mn 1—%— e (12)

which has a nonpositive real part. The above system is thus dissipative. Intuitively, it
is expected that the discrete version of the problem will be numerically stable as long
as the time step is not too large.

d. Radiation boundary condition with arbitrary N°(z). In the model version with
arbitrary varying N*(z) the radiation boundary condition outlined earlier in this
section must be generalized, but a similar procedure can be utilized. The outer
baroclinic-mode solutions are now dependent on the stratification. With the dis-
cretized form u(x = jA, { = kA) = U, exp (—imjd) and w(x = jA, [ =kA) =
W, exp (—imjA), the discretized form of (10a) yields

. WkH - Wk—]

U= =i GinmA °

and elimination of U,,, and U, _, in the discretized form of (10b) leads, in the absence
of friction, to the linear eigenvalue problem of order N — 1.

4

-1

B W,=-uW,p=1toN - 1. (13)

o

Again, N — 1 is the number of unknown w-grid points in the vertical column at the
entrance, excluding the bottom and surface points. The tridiagonal matrix B consists
of ratios of the discrete buoyancy values c,. The eigenvalues u = 4 sin’ mA yield the
set of horizontal wavenumbers m, while the W’s are the corresponding eigenvectors.
The expression for the eigenvalues requires that their values must be real and in the
interval 0 < . < 4, and this criterion is satisfied if the ¢, profile is sufficiently smooth.
Too large jumps in the discretized profile can lead to prohibitively large eigenvalues.

After finding the N — 1 different eigenvalues and eigenvectors corresponding to
the different baroclinic modes, the remaining procedure is identical to that in the
case of constant c: Add the barotropic mode to all possible outgoing baroclinic
modes (see (5a,b)), form the set of ordinary linear equations valid one grid-step
within the domain to determine the constants a, (see (6)) and express the w-values
along the entrance in terms of the u-values one grid-step inside the domain (see
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(6)-(7)). The result is:
w(x =0, { = 2kA)

= % + Eczj[u(x =A L=+ DA) —u@x=4,1= (2 - A4, (14)

fork =1toN — 1, and where the elements

W W' (15)

S, A
Ajk="§§[1_l m

form the generalized matrix A4, which can be evaluated once and for all before the
model is run. W,, are the elements from the matrix W containing the » normalized
eigenvectors, and W' are the elements of the inverse of this matrix.

3. The Skjomen Fjord

a. Fjord characteristics. Skjomen is a sill fjord located near the head of the Vestfjorden-
Ofotfjorden fjord system, in the northern part of Norway (Fig. 2). It is oriented
approximately north-south with the mouth at the northern end, and is surrounded by
steep mountains. The length of the fjord is about 25 km, while the width varies
considerably, from 400 meters at the mouth to about 3 km at the widest section. The
sill is located a few hundred meters outside the mouth and is flanked by two broad
shoulders (Fig. 3). The top of the sill is about 60 meters deep, while depth at the
inner shoulder is 87 meters. Inside from the sill, Skjomen has a deep basin, of about
165 meters at its deepest point.

b. Available data. During a research program from 1977 to 1979, current and
temperature measurements were made in Skjomen, and these were analyzed with
regard to internal tides (Cushman-Roisin and Svendsen, 1983). Two analytical
methods, normal modes and ray tracing, were applied to the data, although neither is
strictly applicable in this situation. Based on the knowledge acquired by this analysis,
an additional sampling program took place during the period of August 4-Septem-
ber 6, 1983. Three current meter moorings were situated at the locations marked M1,
M2, and M3 on Figures 2 and 3. Each mooring contained ten Aanderaa current
meters (Aanderaa, 1979), recording speed, direction, and temperature every
20 minutes. The observation depths were 5, 10, 15, 20, 40, 60, 80, 100 and 120 meters
for all three moorings, and in addition 145 meters for M1 and M2, and 130 meters for
Ma3. All current meters were recording at fixed time intervals: 10, 30, and 50 minutes
past the hour. From the recorded speeds and directions, horizontal north-south
(in-out fjord) and east-west (transverse) velocity components were calculated.

In addition to these current measurements, hydrographical data were collected
near mooring M1 once a week during the observation period. With a MC-4
measuring bridge, salinity and temperature were sampled at 27 selected depths down
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Figure 2. (a) Map of Vestfjorden-Ofotfjord and the surrounding fjord system. (b) Map of the
Skjomen bathymetry. The soundings are in meters and only approximate. The three
moorings are marked M1, M2, and M3.

to 90 meters with intervals ranging from 0.5 m just below the surface to 10 m in the
deepest part. From these measurements, density profiles were calculated, and the
density profile was seen to remain quite stationary throughout the sampling period,
except in the surface layer (<2 m). On the last day of the sampling program,
CTD-stations were taken at eleven positions in the fjord. Among them two profiles
were taken at the position of mooring M1 at 12:05 (st.99) and 19:05 GMT (st.109),
and two near mooring M, at 12:20 (st.100) and 18:50 GMT (st.108).

To form hourly time series, a Butterworth low-pass filter with a two-hour cutoff
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Figure 3. Long-section of the Skjomen fjord, the smooth line shows the actual bottom
topography while the stepped line is the model boundary. The Brunt-Viisild frequency
N (2) representative for the sampling period in August 1983 is displayed on the side. The
figure also shows the chosen grid mesh for the model run. The positions of the moorings M1,
M2, and M3, each containing eleven currentmeters, are indicated. Columns 17, 22 and 27 of
the grid (thick vertical lines) contain the u-grid points used for comparison with the
moorings data.

was first applied on the original time series, and then one value per hour was
extracted to form a time series covering the period from 18:00 hr. August 4 to
24:00 hr. September 1. A tidal analysis of velocity time series following the method of
Godin (1972) returned a resolution of more than 30 frequencies. For each frequency,
major and minor axes of the corresponding tidal ellipses, their orientation in space,
and the Greenwich phase lags were calculated. In all time series, the M,-tide with a
period of 12.42 hours shows by far the clearest signal. Therefore, only waves at that
frequency are examined here.

Figure 4 shows the ellipses of the M,-tide extracted from the time series for every
depth and mooring location, and it is seen how the horizontal velocity vector changes
magnitude and direction with depth and location as one tidal period unfolds. The
cllipses are quite elongated, indicating topographical steering, i.e. the velocities
mostly follow the direction of the fjord. More importantly, Figure 4 shows that the
energy, related to the major axis of the ellipses, varies both longitudinally and
vertically. Later, to display the energy distribution, the major axes of the tidal ellipses
will be squared, and the resulting depth profiles will be compared to the model
results. But, what is already apparent from the ellipses is a level of minimum energy
at about 60 meters depth, the sill level. This is in agreement with the theoretical study
of Buckley (1980) concluding that modes with vanishing horizontal velocity at sill
depth are preferred.

On every ellipse, a phase lag indicates by how much the local internal tide is shifted
compared to the surface tide at the fjord entrance. Because the data positions are
fixed in the time series, it is possible to compare the phase lags among time series.
For Figures 5a,b, and c, vectors are constructed from the different depths at the three
moorings with angles equal to phase lags measured in a right-handed coordinate
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Figure 4. Semidiurnal tidal ellipses calculated from time series of the horizontal velocity

components at each current meter. The depths where the current meters were situated are
indicated.

system and lengths proportional to the energy in the ellipses. If time is thought to
evolve counterclockwise with one cycle corresponding to one tidal period, the angles
plotted in the coordinate system then indicate at what time the maximum positive
velocity in the tidal ellipse occurs at each depth. A striking feature in Figures 5a,b,
and c is the large phase difference between the waves above and those below sill level
(60 m). This phase difference ranges from !4 to % of the tidal period. The scenario is
as follows: After some time of inflow in the upper part of the water column, a
countercurrent builds up in the lower part, and this lower-layer flow reverses some
time after the flow in the upper layer has reversed. This indicates the presence of
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Figure 5. Greenwich phase lags of the tidal ellipses at each depth along the three moorings.
Time is evolving counterclockwise, and the lengths of the line segments indicate the energy
in the semidiurnal internal tide.

more than one mode in the wavefield; otherwise, the phase difference would have
been one half of the tidal period. The plots also suggest a propagation of energy
in-fjord from the sill toward both the surface and the bottom, which is in agreement
with the ray theory (Cushman-Roisin and Svendsen, 1983). An analogous situation is
not uncommon in the open ocean in the vicinity of the shelf break (deWitt et al.,
1986).

4. Application of the model to the Skjomen Fjord

The profile of the Brunt-Viiséla frequency, N(z), used in the model is calculated
from an average of the density profiles obtained from the hydrographical data in
Skjomen Fjord. This profile is then smoothed. Since measurements below 90 meters
are scarce, the Brunt-Viisald frequency is extrapolated there at a constant value
equal to 0.0075 s™'. The resulting profile is displayed on the left side of Figure 3.

Using the frequency w = 1.405 X 10™*s™ for the M,-tide (12.42 hrs.), the profile of
the ray-slope parameter c(z) = w/N(z) is formed, and the integration

. dz'
C=J:c—(z,—)
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is performed to define the new vertical variable. Uniform grid steps have equal
lengths in the x and { coordinates to guarantee that the rays follow the diagonals of
the grid, and a grid-step of A = 400 m is chosen to form a grid-mesh of 71 horizontal
steps and 54 vertical steps. The even grid-steps in { correspond to uneven steps in the
physical z-axis, varying from 0.5 meters near the top where N(z) is largest, to
7.5 meters in the deepest region where N(z) is smallest (left side of Fig. 3). Solid
boundaries must be stepwise and are chosen to make the best fit to the topography.
The resulting grid had 1436 unknown values of u and w. By tracing rays from grid
point to grid point, it can be seen that, for this particular choice of stratification and
topography, most of the rays are connected with the entrance area, so resonance is
weak (Cushman-Roisin et al., 1989). The longest possible time step is found to be
At = A%/2 to keep the iterations of this particular case stable. The numerical
relaxation procedure is accelerated by decreasing the value of A (the diffusion
parameter) during the run, from an initial value of A?/2 down to A*/3. The number of
iterations needed to get a cumulated mass imbalance of less than one percent is
235,158 (Cushman-Roisin et al., 1989). The residual R that measures the departure in
x and ¢ from zero (Cushman-Roisin ef al, 1989) has then dropped from an initial
value of 7730.0 to 2.01 - 10”". [Another method of accelerating the relaxation has also
been found useful: using two alternating time steps, one large and one small such
that the double step is numerically stable. Tests indicate that this Chebyshev-
acceleration method can reduce the number of iterations, in the present case, by
37%.]

From the velocity field (u,w) returned by the model, the streamfunction
Re[{ exp (—iwt)] is calculated. Contours of the streamfunction are displayed on
Figure 6 as the tide proceeds. These plots clearly show two branches in the wave
field, both originating at the sill, with one propagating toward the surface and the
other toward the bottom. Between them is a shadow zone with almost no flow. Such
branching is found in the present data set (Figs. 4-5), and had already been found in
earlier data (Cushman-Roisin and Svendsen, 1983). The streamfunction patterns
also reveal that there is a phase lag between the two branches, with the upper branch
leading the lower, in qualitative agreement with the phase difference found in the
data (Fig. 5).

It is possible to make quantitative comparisons between the energies and phases
predicted by the model and those found in the data. Because the data are limited to
horizontal velocities, only the horizontal velocities of the model are considered,
defined as u(x, z, t) = Re{[ug(x, z) + iu(x, 2)]e™ } = ug(x,z) coswt + u,(x, z) sin ot,
where u, and u, are respectively the real and imaginary parts of the horizontal
velocity output by the model, and w is the tidal frequency. This expression is of course
horizontally one-dimensional, leading to perfectly elongated ellipses with the two
extreme values occurring when the phase wt satisfies the equation tan wt = u,/u,.
Note that, in the present notation, wt = 0 corresponds to the maximum of the vertical
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Figure 6. Streamfunction during the first half of the tidal period obtained by the model of
Skjomen Fjord.

velocity at the entrance of the fjord (mid point between low and high tides) and thus
also to the reference phase used in the data analysis. A convenient way to define the
phase lag at a specific position (x, z) is therefore to take the phase wt at which
u(x, z, t) reaches its positive extreme value. It follows that the phase lag is the angle
of the vector [ug, ;] in the complex plane. In analogy with the estimation of the
energy levels from the data, the simulated energy levels are taken as u% + 12 The
velocities are rescaled to physical magnitudes, based on an amplitude of the surface
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tide equal to 1.0 meter, according to observations. Although the wave energy is not
strictly the velocity square, this representation is sufficient for the purpose of
comparing the energy levels between model and data.

The three columns of the numerical grid corresponding to locations nearest to the
three mooring lines were then selected: columns 17, 22 and 27 to represent moorings
M1, M2 and M3, respectively. Because of the staggered nature of the grid, the model
calculates horizontal velocities only along even-numbered columns. Therefore, we
linearly interpolated the u velocities of adjacent columns to estimate their values at
columns 17 and 27. Also, because the two-dimensionality of the model does not take
into account variations in the fjord’s width, a correction was applied. To conserve
mass, the flow naturally accelerates and decelerates according to the variations in the
cross-sectional of the fjord. Therefore, we multiplied the u-velocities of column n by
the area ratio A/4,, where A = 17 x 10* m® is approximately the average cross-
section in the vicinity of the moorings, and 4,, = 7 X 10° m%, 4,, = 13 x 10° m’? and
A,, = 15.6 x 10° m* are the actual cross-sections at the three mooring locations, M1,
M2 and M3, respectively. From the complex u-velocities so obtained, energies and
phases were then calculated. Comparisons between model results and observations
are presented on Figure 7a, 7b and 7c for the three mooring locations.

The top panels of each of the three figures compare the simulated (curves) and
observed (dots) energy levels, defined as the square of the horizontal-velocity
maximum during the tidal cycle. In the upper level (above 60 meters), the vertical
distribution of wave energy is correctly reproduced by the model at all three mooring
locations. The substantial decrease of energy from mooring M1 to mooring M2 is also
correctly modeled. At mooring M2 (Fig. 7b), the model slightly underestimates the
energy level, while it overestimates the energy level at mooring M3 (Fig. 7c) by as
much as 30%. This last discrepancy may be attributable to the complex geography of
the fjord in the vicinity of mooring M3 (Fig. 2); the sharp elbow in the fjord shape and
the complicated bathymetry make it difficult to apply a precise cross-section correc-
tion factor. Also, the shallow bank on the east side and down-fjord from the mooring
(top of Fig. 2) may reflect or break waves so that a portion of the original wave energy
may never reach mooring M3. [In retrospect, mooring M3 was not ideally positioned
to test a two-dimensional model. ]

At all three mooring locations, the model yields a level of minimum energy at
about 60 meters. This is in total agreement with the observations. Furthermore, the
model provides the explanation. As discussed earlier, it is readily apparent from
Figure 6 that the internal tides are prefentially generated at the inward sill edge and
that from this location emanate two energy beams, one upward and the other
downward. Consequently, further in-fjord, there is a shadow zone at approximately
the sill level.

Below the sill level, the model reproduces the secondary energy maximum at all
three moorings, but the amplitudes (except for a sharp peak in the profile of column
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Figure 7a. Top panel: The energy profile (i} + u}) according to column 17 of the model,
corrected for the varying width of the fjord (see text); dots indicate the observed energy
levels at mooring M1. Bottom panel: simulated (stars) and observed (open squares) phases
for column 17 of model and M1 mooring data, respectively.

17, nearest to mooring M1) are underestimated, and the depths are somewhat off.
One possible reason for these discrepancies may be that the Brunt-Véisild frequency
value assumed for the model below 90 meters in the absence of data is inaccurate.
Whatever the difference is between data and model, it is clear that the lower,
downward propagating beam is substantially less energetic than the upward-
propagating beam. This observation contrasts with the typical situation at the
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continental shelf break where the lower beam is usually the most energetic of the two
(deWitt et al., 1986; New and Pingree, 1990).

The bottom panels of Figure 7a, 7b and 7c compare the simulated (stars) and
observed (open squares) phases at the three mooring locations. In discussing phases,
one must bear in mind the energy levels, for phases become uncertain and meaning-
less at low energy levels. The streamfunction plots (Fig. 6) and the previous
discussion of energy profiles (top panels of Figs. 7) reveal two beams emanating from
the sill: one broad and energetic beam propagates upward, and the other, narrower
and weaker, propagates downward. One expects the phases of these two beams to be
quite different, and they indeed are. At the core of the upper, most energetic beam,
the simulated phases are in excellent agreement with the observations. In particular,
the variation of phase with depth across the beam is correctly reproduced at all three
mooring locations. [The good agreement at mooring M3 may in fact be fortuitous,
given the complex situation at that location.] The change in phase from one mooring
to the next is also accurately simulated: both data and model indicate a phase lag of
about 10 degrees from mooring M1 to mooring M2, although the simulated phases
are behind the observed ones at each location. Physically, the energy is propagated
in-fjord.

The lower beam appears narrower in the model and broader in the observations,
but both model and data agree on the basic trends. As the beam extends in-fjord, its
depth increases and phase decreases, from approximately 80 m and 310°-350° at
mooring M1/column 17, to 100 m and 280°-310° at mooring M2/column 22, and
finally to 150 m and 280°-290° at mooring M2/column 27.

The most striking feature in both simulated and observed phases is the pro-
nounced phase shift between the upper and lower beams, which was not readily
apparent from the streamfunction plots (Fig. 6). According to Figures 7a, b, c, the
lower beam lags behind the upper beam by at least half a cycle, about 180° according
to the model, and about 230° according to the data. Because an exact 180° shift would
correspond to a first baroclinic mode, it can be concluded that the model tends to
exaggerate the relative importance of this mode.

The very pronounced peak in column 17 of the model at a depth of about 80
meters (Upper panel of Fig. 7a) requires special attention. Undoubtedly, it is
attributed to the sharp edge of the sill only two gridpoints away (Fig. 3). At first, one
might conclude it an artifact of the numerical solution. Because the inner shoulder is
in reality a little deeper than its model representation (87 m instead of 80 m), a
velocity peak in the data, if one exists, should be detected around 85-90 meters.
Unfortunately, no current meter was placed at such depth, and the depths of the
nearest current meters, 80 and 100 meters, were presumably too distant to capture
this thin beam.

Fortunately, the four CTD stations taken in the vicinity of moorings M1 and M2
(see Section 3b) give us, by virtue of their fine vertical resolution, the opportunity to
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confirm or disprove the existence of this high-energy beam. Our conjecture is that if
the beam exists, its high amplitudes should cause wave breaking and thus leave traces
of vertical mixing in the vicinity of the sill shoulder. Because salinity is here the main
contribution to density variations, we choose to concentrate on the salinity profiles of
the CTD casts. The pycnocline extending from sill depth (60 m) to the depth of the
inner shoulder (87 m) and overlying the rather homogeneous deep waters (Fig. 3)
corresponds to a halocline with a salinity ranging from 32.4 to 33.8 parts per mil.
Figures 8a and b show the salinity profiles at the mooring locations M1 and M2,
respectively. Also, each figure displays two profiles, taken at different phases during
the tidal cycle. If the model is correct and the high-energy beam is present at M1 but
not at M2, then mixing should be detected at depths around 80-90 m in Figure 8a and
not in Figure 8b. Indeed, the profile at station 99 (Fig. 8a) indicates a breakdown of
the sharp transition (rounding of the corner) which may well have been caused by a
mixing event. Furthermore, at the same location but several hours later (Station
109), the shape of the transition zone has been substantially changed, indicating
additional mixing in the intervening time. By contrast, there is no such indication of
mixing at M2 (Fig. 8b).

5. Conclusions

A two-dimensional numerical model of tide-generated internal gravity waves
above arbitrary topography, developed by Cushman-Roisin et al. (1989), has been
generalized. Two major extensions are the allowance for an arbitrary vertical
stratification and a radiation condition along the open boundary. The first change
involves the use of a density-dependent vertical variable, which is equivalent to using
a grid stretched so that its diagonal directions are aligned with the characteristic
directions of the waves. The radiation boundary condition is imposed by coupling the
two columns closest to the open boundary via an outer solution consisting of normal
modes. This involves a computation of a discretized solution of the normal modes for
the actual stratification in the domain.

Data collected in the Skjomen Fjord in North Norway show evidence of internal
waves with the frequency of the semi-diurnal tide. Tidal ellipses and Greenwich
phase lags are calculated from the one-month long time series of current measure-
ments. The wave energy is strongest in two regions, above and below sill level, leaving
a region of low energy at sill level. The energy diminishes inward, partly due to a
widening of the fjord and, perhaps also, partly due to sideways energy losses. Finally,
a phase lag between the two energy bands, above and below sill level, of more than
half the tidal period is noted.

Based on hydrographical data, a representative density profile for the fjord is
calculated, and a stretched grid is constructed. The model streamfunction repro-
duces the two branches evolving from the sill, one toward the surface and the other
toward the bottom, in excellent agreement with the data. Furthermore, the com-
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puted phase difference between these two branches is in very good agreement with
the corresponding phase difference found in the data. When the computed velocity
field is corrected for the widening of the fjord, the model energy decreases in-fjord,
in a manner consistent with the decrease found in the data. Finally, a very narrow
energy beam is predicted by the model. Because the current meters were placed too
far apart, there is no trace of such a beam in the current data, but an examination of
the salinity profiles do reveal a zone of mixing at approximately the right depth in the
vicinity of the sill shoulder and suggests that such a high-energy beam does exist and
is responsible for some wave breaking and vertical mixing.

The model described here is sufficiently general to be applicable to various
systems, not only constricted water bodies such as fjords but also open coastal areas
such as shelf and slope. Because it is built to handle resonance, the model is also apt
to provide accurate descriptions of the energy distribution in resonant fjords (Lewis
and Perkin, 1982; de Young and Pond, 1987).
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