454 research outputs found

    Socially responsible design for social robots in public spaces

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Social robots are an innovative technology using artificial intelligence (AI), that can combine social, physical and digital interactions to create unique user experiences. Potential applications require a good user experience to encourage adoption by people. Social robots can also be considered surveillance devices, with sensors, image recording and AI that can identify faces and emotions. Therefore, organisations deploying social robot applications must meet privacy legislation requirements regarding the personal data used and collected in an interaction. Furthermore, to be socially responsible, organisations must behave in a manner that benefits society. Hence deploying a social robot in a public space must be carefully managed for the impact it might have on people within that environment. Design methods, that incorporate privacy considerations for public spaces and that enable a good user experience, are not yet available. This dissertation contributes a design framework for organisations, that enables discovering potential applications, designing these applications with consideration for both privacy and user experience, and implementing these applications for use with humanoid social robots in public spaces. This research used an Action Design Research (ADR) approach to develop methods that allow organisations to discover and implement socially responsible social robot applications, incorporating purposefully designed User Experience (UX) and privacy considerations, in public spaces. Embodying ADR principles of practice-inspired research and theory-ingrained artifact, two experiments were firstly undertaken. The first experiment indicated that a social robot could function as a social agent, effectively undertaking a task requiring social engagement. However, greater value for organisations might be realised through applications utilising the full capabilities of a social robot across the social, physical and digital realms. The second experiment investigated privacy and UX, discovering that people may provide more personal information to a humanoid robot than to a kiosk when using transparency, which is a core component of Privacy-by-Design. Both experiments contributed to the development of a UX Human-Robot Interaction (HRI) design framework for social robot applications, that combines Lean UX (composed of Lean Startup, Design Thinking and Agile practices), privacy theory and HRI theory. This UX-HRI framework was refined in iterative cycles of building, testing and evaluating social robot applications with design studies in three different environments, using the ADR principles of reciprocal shaping, mutually influential roles, and authentic and concurrent evaluation. Design principles were formulated through the generalisation of the context-specific findings. Guided by this UX-HRI design framework, socially responsible social robot applications can be created

    Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival

    Get PDF
    Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): &lt;i&gt;N&lt;/i&gt;-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that &lt;i&gt;LplA1&lt;/i&gt; plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite &lt;i&gt;P.falciparum&lt;/i&gt; consistently were unsuccessful while in the rodent malaria model parasite &lt;i&gt;P. berghei&lt;/i&gt; the &lt;i&gt;LplA1&lt;/i&gt; gene locus was targeted by knock-in and knockout constructs. However, the &lt;i&gt;LplA1&lt;/i&gt; &lt;sup&gt;(-)&lt;/sup&gt; mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite

    A multistate model of health transitions in older people: a secondary analysis of ASPREE clinical trial data

    Get PDF
    Background: Understanding the nature of transitions from a healthy state to chronic diseases and death is important for planning health-care system requirements and interventions. We aimed to quantify the trajectories of disease and disability in a population of healthy older people. Methods: We conducted a secondary analysis of data from the ASPREE trial, which was done in 50 sites in Australia and the USA and recruited community-dwelling, healthy individuals who were aged 70 years or older (≥65 years for Black and Hispanic people in the USA) between March 10, 2010, and Dec 24, 2014. Participants were followed up with annual face-to-face visits, biennial assessments of cognitive function, and biannual visits for physical function until death or June 12, 2017, whichever occurred first. We used multistate models to examine transitions from a healthy state to first intermediate disease events (ie, cancer events, stroke events, cardiac events, and physical disability or dementia) and, ultimately, to death. We also examined the effects of age and sex on transition rates using Cox proportional hazards regression models. Findings: 19 114 participants with a median age of 74·0 years (IQR 71·6–77·7) were included in our analyses. During a median follow-up of 4·7 years (IQR 3·6–5·7), 1933 (10·1%) of 19 114 participants had an incident cancer event, 487 (2·5%) had an incident cardiac event, 398 (2·1%) had an incident stroke event, 924 (4·8%) developed persistent physical disability or dementia, and 1052 (5·5%) died. 15 398 (80·6%) individuals did not have any of these events during follow-up. The highest proportion of deaths followed incident cancer (501 [47·6%] of 1052) and 129 (12·3%) participants transitioned from disability or dementia to death. Among 12 postulated transitions, transitions from the intermediate states to death had much higher rates than transitions from a healthy state to death. The progression rates to death were 158 events per 1000 person-years (95% CI 144–172) from cancer, 112 events per 1000 person-years (86–145) from stroke, 88 events per 1000 person-years (68–111) from cardiac disease, 69 events per 1000 person-years (58–82) from disability or dementia, and four events per 1000 person-years (4–5) from a healthy state. Age was significantly associated with an accelerated rate for most transitions. Male sex (vs female sex) was significantly associated with an accelerate rate for five of 12 transitions. Interpretation: We describe a multistate model in a healthy older population in whom the most common transition was from a healthy state to cancer. Our findings provide unique insights into the frequency of events, their transition rates, and the impact of age and sex. These results have implications for preventive health interventions and planning for appropriate levels of residential care in healthy ageing populations. Funding: The National Institutes of Health

    Direct Nanopore Sequencing of mRNA Reveals Landscape of Transcript Isoforms in Apicomplexan Parasites.

    Get PDF
    Alternative splicing is a widespread phenomenon in metazoans by which single genes are able to produce multiple isoforms of the gene product. However, this has been poorly characterized in apicomplexans, a major phylum of some of the most important global parasites. Efforts have been hampered by atypical transcriptomic features, such as the high AU content of Plasmodium RNA, but also the limitations of short-read sequencing in deciphering complex splicing events. In this study, we utilized the long read direct RNA sequencing platform developed by Oxford Nanopore Technologies to survey the alternative splicing landscape of Toxoplasma gondii and Plasmodium falciparum We find that while native RNA sequencing has a reduced throughput, it allows us to obtain full-length or nearly full-length transcripts with comparable quantification to Illumina sequencing. By comparing these data with available gene models, we find widespread alternative splicing, particularly intron retention, in these parasites. Most of these transcripts contain premature stop codons, suggesting that in these parasites, alternative splicing represents a pathway to transcriptomic diversity, rather than expanding proteomic diversity. Moreover, alternative splicing rates are comparable between parasites, suggesting a shared splicing machinery, despite notable transcriptomic differences between the parasites. This study highlights a strategy in using long-read sequencing to understand splicing events at the whole-transcript level and has implications in the future interpretation of transcriptome sequencing studies.IMPORTANCE We have used a novel nanopore sequencing technology to directly analyze parasite transcriptomes. The very long reads of this technology reveal the full-length genes of the parasites that cause malaria and toxoplasmosis. Gene transcripts must be processed in a process called splicing before they can be translated to protein. Our analysis reveals that these parasites very frequently only partially process their gene products, in a manner that departs dramatically from their human hosts

    Protein kinase A negatively regulates Ca2+ signalling in Toxoplasma gondii.

    Get PDF
    The phylum Apicomplexa comprises a group of obligate intracellular parasites that alternate between intracellular replicating stages and actively motile extracellular forms that move through tissue. Parasite cytosolic Ca2+ signalling activates motility, but how this is switched off after invasion is complete to allow for replication to begin is not understood. Here, we show that the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A catalytic subunit 1 (PKAc1) of Toxoplasma is responsible for suppression of Ca2+ signalling upon host cell invasion. We demonstrate that PKAc1 is sequestered to the parasite periphery by dual acylation of PKA regulatory subunit 1 (PKAr1). Upon genetic depletion of PKAc1 we show that newly invaded parasites exit host cells shortly thereafter, in a perforin-like protein 1 (PLP-1)-dependent fashion. Furthermore, we demonstrate that loss of PKAc1 prevents rapid down-regulation of cytosolic [Ca2+] levels shortly after invasion. We also provide evidence that loss of PKAc1 sensitises parasites to cyclic GMP (cGMP)-induced Ca2+ signalling, thus demonstrating a functional link between cAMP and these other signalling modalities. Together, this work provides a new paradigm in understanding how Toxoplasma and related apicomplexan parasites regulate infectivity

    HDL-Associated Estradiol Stimulates Endothelial NO Synthase and Vasodilation in an SR-BI–Dependent Manner

    Get PDF
    Cardiovascular diseases remain the leading cause of death in the United States. Two factors associated with a decreased risk of developing cardiovascular disease are elevated HDL levels and sex — specifically, a decreased risk is found in premenopausal women. HDL and estrogen stimulate eNOS and the production of nitric oxide, which has numerous protective effects in the vascular system including vasodilation, antiadhesion, and anti-inflammatory effects. We tested the hypothesis that HDL binds to its receptor, scavenger receptor class B type I (SR-BI), and delivers estrogen to eNOS, thereby stimulating the enzyme. HDL isolated from women stimulated eNOS, whereas HDL isolated from men had minimal activity. Studies with ovariectomized and ovariectomized/estrogen replacement mouse models demonstrated that HDL-associated estradiol stimulation of eNOS is SR-BI dependent. Furthermore, female HDL, but not male HDL, promoted the relaxation of muscle strips isolated from C57BL/6 mice but not SR-BI null mice. Finally, HDL isolated from premenopausal women or postmenopausal women receiving estradiol replacement therapy stimulated eNOS, whereas HDL isolated from postmenopausal women did not stimulate eNOS. We conclude that HDL-associated estrodial is capable of the stimulating eNOS. These studies establish a new paradigm for examining the cardiovascular effects of HDL and estrogen

    Nanoparticle vesicle encoding for imaging and tracking cell populations.

    Get PDF
    For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h
    • …
    corecore