152,425 research outputs found

    On a class of reductions of Manakov-Santini hierarchy connected with the interpolating system

    Full text link
    Using Lax-Sato formulation of Manakov-Santini hierarchy, we introduce a class of reductions, such that zero order reduction of this class corresponds to dKP hierarchy, and the first order reduction gives the hierarchy associated with the interpolating system introduced by Dunajski. We present Lax-Sato form of reduced hierarchy for the interpolating system and also for the reduction of arbitrary order. Similar to dKP hierarchy, Lax-Sato equations for LL (Lax fuction) due to the reduction split from Lax-Sato equations for MM (Orlov function), and the reduced hierarchy for arbitrary order of reduction is defined by Lax-Sato equations for LL only. Characterization of the class of reductions in terms of the dressing data is given. We also consider a waterbag reduction of the interpolating system hierarchy, which defines (1+1)-dimensional systems of hydrodynamic type.Comment: 15 pages, revised and extended, characterization of the class of reductions in terms of the dressing data is give

    Classification of (n+3)(n+3)-dimensional metric nn-Lie algebras

    Full text link
    In this paper, we focus on (n+3)(n+3)-dimensional metric nn-Lie algebras. To begin with, we give some properties on (n+3)(n+3)-dimensional nn-Lie algebras. Then based on the properties, we obtain the classification of (n+3)(n+3)-dimensional metric nn-Lie algebras

    Permissive Controller Synthesis for Probabilistic Systems

    Get PDF
    We propose novel controller synthesis techniques for probabilistic systems modelled using stochastic two-player games: one player acts as a controller, the second represents its environment, and probability is used to capture uncertainty arising due to, for example, unreliable sensors or faulty system components. Our aim is to generate robust controllers that are resilient to unexpected system changes at runtime, and flexible enough to be adapted if additional constraints need to be imposed. We develop a permissive controller synthesis framework, which generates multi-strategies for the controller, offering a choice of control actions to take at each time step. We formalise the notion of permissivity using penalties, which are incurred each time a possible control action is disallowed by a multi-strategy. Permissive controller synthesis aims to generate a multi-strategy that minimises these penalties, whilst guaranteeing the satisfaction of a specified system property. We establish several key results about the optimality of multi-strategies and the complexity of synthesising them. Then, we develop methods to perform permissive controller synthesis using mixed integer linear programming and illustrate their effectiveness on a selection of case studies

    Non-analyticity of the groud state energy of the Hamiltonian for Hydrogen atom in non-relativistic QED

    Full text link
    We derive the ground state energy up to the fourth order in the fine structure constant α\alpha for the translation invariant Pauli-Fierz Hamiltonian for a spinless electron coupled to the quantized radiation field. As a consequence, we obtain the non-analyticity of the ground state energy of the Pauli-Fierz operator for a single particle in the Coulomb field of a nucleus

    Renormalized Electron Mass in Nonrelativistic QED

    Get PDF
    Within the framework of nonrelativistic QED, we prove that, for small values of the coupling constant, the energy function, E_|P|, of a dressed electron is twice differentiable in the momentum P in a neighborhood of P = 0. Furthermore, (E_|P|)" is bounded from below by a constant larger than zero. Our results are proven with the help of iterative analytic perturbation theory

    Quantum criticality in a Mott pn-junction in an armchair carbon nanotube

    Full text link
    In an armchair carbon nanotube pn junction the p- and n- regions are separated by a region of a Mott insulator, which can backscatter electrons only in pairs. We predict a quantum-critical behavior in such a pn junction. Depending on the junction's built-in electric field E, its conductance G scales either to zero or to the ideal value G=4e^2/h as the temperature T is lowered. The two types of the G(T) dependence indicate the existence, at some special value of E, of an intermediate quantum critical point with a finite conductance G<4e^2/h. This makes the pn junction drastically different from a simple barrier in a Luttinger liquid.Comment: 5 pages, 1 figur

    Applications of hidden symmetries to black hole physics

    Full text link
    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set (`tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.Comment: This is an extended version of the talks at NEB-14 conference (June,Ioannina,Greece) and JGRG20 meeting (September, Kyoto, Japan
    corecore