research

On a class of reductions of Manakov-Santini hierarchy connected with the interpolating system

Abstract

Using Lax-Sato formulation of Manakov-Santini hierarchy, we introduce a class of reductions, such that zero order reduction of this class corresponds to dKP hierarchy, and the first order reduction gives the hierarchy associated with the interpolating system introduced by Dunajski. We present Lax-Sato form of reduced hierarchy for the interpolating system and also for the reduction of arbitrary order. Similar to dKP hierarchy, Lax-Sato equations for LL (Lax fuction) due to the reduction split from Lax-Sato equations for MM (Orlov function), and the reduced hierarchy for arbitrary order of reduction is defined by Lax-Sato equations for LL only. Characterization of the class of reductions in terms of the dressing data is given. We also consider a waterbag reduction of the interpolating system hierarchy, which defines (1+1)-dimensional systems of hydrodynamic type.Comment: 15 pages, revised and extended, characterization of the class of reductions in terms of the dressing data is give

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019