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Abstract: Within the framework of nonrelativistic QED, we prove that, for small values
of the coupling constant, the energy function, E �P , of a dressed electron is twice differen-

tiable in the momentum �P in a neighborhood of �P = 0. Furthermore,
∂2 E �P
(∂| �P|)2 is bounded

from below by a constant larger than zero. Our results are proven with the help of iterative
analytic perturbation theory.

I. Description of the Problem, Definition of the Model, and Outline of the Proof

In this paper, we study problems connected with the renormalized electron mass in a
model of quantum electrodynamics (QED) with nonrelativistic matter. We are inter-
ested in rigorously controlling radiative corrections to the electron mass caused by the
interaction of the electron with the soft modes of the quantized electromagnetic field.
The model describing interactions between nonrelativistic, quantum-mechanical charged
matter and the quantized radiation field at low energies (i.e., energies smaller than the
rest energy of an electron) is the “standard model”, see [7]. In this paper, we consider
a system consisting of a single spinless electron, described as a nonrelativistic particle
that is minimally coupled to the quantized radiation field, and photons. Electron spin
can easily be included in our description without substantial complications.

The physical system studied in this paper exhibits space translations invariance. The
Hamiltonian, H , generating the time evolution, commutes with the vector operator, �P ,
representing the total momentum of the system, which generates space translations. If an
infrared regularization, e.g., an infrared cutoff σ on the photon frequency, is imposed on
the interaction Hamiltonian, there exist single-electron or dressed one-electron states, as
long as their momentum is smaller than the bare electron mass, m, of the electron. This
means that a notion of mass shell in the energy momentum spectrum is meaningful for
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velocities | �P|/m smaller than the speed of light c; (with c ≡ m ≡ 1 in our units). Vec-
tors {�σ } describing dressed one-electron states are normalizable vectors in the Hilbert
space H of pure states of the system. They are characterized as solutions of the equation

Hσ�σ = Eσ�P�
σ , | �P| < 1, (I.1)

where Hσ is the Hamiltonian with an infrared cutoff σ in the interaction term and Eσ�P ,

the energy of a dressed electron, is a function of the momentum operator �P . If in the
joint spectrum of the components of �P the support of the vector�σ is contained in a ball
centered at the origin and of radius less than 1 ≡ mc, then Eq. (I.1) has solutions; see
[6]. Since [H, �P] = 0, Eq. (I.1) can be studied for the fiber vectors, �σ�̄P , corresponding

to a value, �P , of the total momentum (both the total momentum operator and points in
its spectrum will henceforth be denoted by �P – without danger of confusion). Thus we
consider the equation

Hσ
�P�

σ
�P = Eσ�P�

σ
�P , (I.2)

where Hσ
�P is the fiber Hamiltonian at fixed total momentum �P , and Eσ�P is the value of

the function Eσ�z at the point �z ≡ �P . Physically, states {�σ } solving Eq. (I.1) describe a
freely moving electron in the absence of asymptotic photons.

It is an essential aspect of the “infrared catastrophe” in QED that Eq. (I.1) does not
have any normalizable solution in the limit where the infrared cut-off σ tends to zero,
and the underlying dynamical picture of a freely moving electron breaks down; see
[5]. Nevertheless, the limiting behavior of the function Eσ�P is of great interest for the
following reasons.

As long as σ > 0, a natural definition of the renormalized electron mass, mr , is given
by the formula

mr (σ ) :=
⎡
⎣ ∂2 Eσ| �P|
(∂| �P|)2 | �P=0

⎤
⎦

−1

. (I.3)

(Note that Eσ�P ≡ Eσ| �P| is invariant under rotations.) Equation (I.3) is expected to remain

meaningful in the limit σ → 0. In particular, the quantity on the R.H.S. of Eq. (I.3) is
expected to be positive and bounded from above uniformly in the infrared cutoff σ .

More importantly, one aims at mathematical control of the function

mr (σ, | �P|) :=
⎡
⎣ ∂2 Eσ| �P|
(∂| �P|)2

⎤
⎦

−1

(I.4)

in a full neighborhood, S, of �P = 0, corresponding to a slowly moving electron (i.e., in
the nonrelativistic regime). When combined with a number of other spectral properties
of the Hamiltonian of nonrelativistic QED the condition

∂2 Eσ| �P|
(∂| �P|)2 > 0 , �P ∈ S, (I.5)
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uniformly in σ > 0, suffices to yield a consistent scattering picture in the limit when
σ → 0 in which the electron exhibits infraparticle behavior. In fact, (I.5) is a crucial
ingredient in the analysis of Compton scattering presented in [5,13].

Main results. Assuming the coupling constant, α, small enough, the following results
follow.

1) The function

�| �P| := lim
σ→0

∂2 Eσ| �P|
(∂| �P|)2 (I.6)

is well defined for �P ∈ S := { �P | | �P| < 1
3 }; furthermore, it is Hölder-continuous in

�P .
2) The function

E �P := lim
σ→0

Eσ�P (I.7)

is twice differentiable in �P ∈ S and

∂2 E| �P|
(∂| �P|)2 = �| �P|. (I.8)

3)

lim
α→0

∂2 Eσ| �P|
(∂| �P|)2 = 1

m
, �P ∈ S, (I.9)

uniformly in σ , where m is the bare electron mass. (Our results can be extended to
a region S (inside the unit ball) of radius larger than 1

3 .)

We wish to mention some related earlier results. Using operator-theoretic renormal-
ization group methods, results (I.6) and (I.9) have been proven in [2] for the special value
�P = 0. The point �P = 0 is exceptional, because the Hamiltonian H �P is infrared regular

at �P = 0; it has a normalizable ground state. Thomas Chen (see [3]) has established the
results in (I.8), (I.9) (using smooth infrared cut-offs) by a highly non-trivial extension
of the analysis of [2] to arbitrary momenta �P ∈ S.

The procedure presented in our paper relies on iterative analytic perturbation the-
ory (see Sect. II where this tool is recalled) that makes our proof substantially different
and much shorter in comparison to a renormalization group approach. The main fea-
ture is a more transparent treatment of the so-called marginal terms of the interaction,
where an essential role is played by explicit Bogoliubov transformations that transform
the infrared representations of the CCR of photon creation- and annihilation operators
determined by dressed one-particle states of fixed momentum �P( �= 0) back to the Fock
representation. The use of these Bogoliubov transformations is a crucial device in our
fight against the infrared problem. The way in which we are using them is new, at least
in the context of mathematically rigorous results on the infrared problem in QED.

In our paper, the regularity properties of E �P come with an explicit control of the
asymptotics of the fiber ground state eigenvectors�σ�P as σ tends to zero. (This improves
earlier results in [6].) Along the lines of [1], these results are preparatory to developing an
infrared finite algorithm for the asymptotic expansion of the renormalized electron mass
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in powers and, probably, logarithms of the finestructure constant α, up to an arbitrarily
small remainder term. However, the expansion in the coupling constant α is not studied
in this paper.

With regard to ultraviolet corrections to the electron mass in nonrelativistic QED
models, we refer the reader to [8,10,11 and 9].

In Sect. I.1 below, the model is defined rigorously. Then, for the convenience of the
reader, in Sect. I.2 we outline the key ideas of the proof and present the organization of
the remaining sections of the paper.

I.1. Definition of the model.

Hilbert space. The Hilbert space of pure state vectors of a system consisting of one
non-relativistic electron interacting with the quantized electromagnetic field is given by

H := Hel ⊗ F , (I.10)

where Hel = L2(R3) is the Hilbert space for a single Schrödinger electron; for expos-
itory convenience, we neglect the spin of the electron. The Hilbert space, F , used to
describe the states of the transverse modes of the quantized electromagnetic field (the
photons) in the Coulomb gauge is given by the Fock space

F :=
∞⊕

N=0

F (N ) , F (0) = C� , (I.11)

where� is the vacuum vector (the state of the electromagnetic field without any excited
modes), and

F (N ) := SN

N⊗
j=1

h , N ≥ 1 , (I.12)

where the Hilbert space h of state vectors of a single photon is

h := L2(R3 × Z2). (I.13)

Here, R3 is momentum space, and Z2 accounts for the two independent transverse polar-
izations (or helicities) of a photon. In (I.12), SN denotes the orthogonal projection onto
the subspace of

⊗N
j=1 h of totally symmetric N -photon wave functions, which accounts

for the fact that photons satisfy Bose-Einstein statistics. Thus, F (N ) is the subspace of
F of state vectors corresponding to configurations of exactly N photons.

Units. In this paper, we employ units such that Planck’s constant �, the speed of light
c, and the mass of the electron m are equal to 1.

Hamiltonian. The dynamics of the system is generated by the Hamiltonian

H :=
(
−i �∇�x + α1/2 �A(�x)

)2

2
+ H f . (I.14)

The (three-component) multiplication operator �x ∈ R
3 represents the position of the

electron. The electron momentum operator is given by �p = −i �∇�x . Furthermore, α > 0
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is the fine structure constant (which, in this paper, plays the rôle of a small parame-
ter), and �A(�x) denotes the vector potential of the transverse modes of the quantized
electromagnetic field in the Coulomb gauge,

�∇�x · �A(�x) = 0 , (I.15)

cutoff at high photon frequencies.
H f is the Hamiltonian of the quantized, free electromagnetic field. It is given by

H f :=
∑
λ=±

∫
d3k |�k| a∗

�k,λ a�k,λ , (I.16)

where a∗
�k,λ and a�k,λ are the usual photon creation- and annihilation operators satisfying

the canonical commutation relations

[a�k,λ , a∗
�k′,λ′ ] = δλλ′ δ(�k − �k′), (I.17)

[a#
�k,λ , a#

�k′,λ′ ] = 0, (I.18)

for �k, �k′ ∈ R
3 and λ, λ′ ∈ Z2 ≡ {±}, where a# = a or a∗. The vacuum vector � ∈ F

is characterized by the condition

a�k,λ � = 0 , (I.19)

for all �k ∈ R
3 and λ ∈ Z2 ≡ {±}.

The quantized electromagnetic vector potential is given by

�A(�x) :=
∑
λ=±

∫
B


d3k√
|�k|

{
�ε�k,λe−i �k·�x a∗

�k,λ + �ε ∗
�k,λei �k·�x a�k,λ

}
, (I.20)

where �ε�k,−, �ε�k,+ are photon polarization vectors, i.e., two unit vectors in R
3⊗C satisfying

�ε ∗
�k,λ · �ε�k,µ = δλµ , �k · �ε�k,λ = 0 , (I.21)

for λ,µ = ±. The equation �k · �ε�k,λ = 0 expresses the Coulomb gauge condition.
Moreover, B
 is a ball of radius 
 centered at the origin in momentum space. Here,

 represents an ultraviolet cutoff that will be kept fixed throughout our analysis. The
vector potential defined in (I.20) is thus cut off in the ultraviolet.

Throughout this paper, it will be assumed that
 ≈ 1 (the rest energy of an electron),
and that α > 0 is sufficiently small. Under these assumptions, the Hamiltonian H is
selfadjoint on D(H0), i.e., on the domain of definition of the operator

H0 := (−i �∇�x )2

2
+ H f . (I.22)

The perturbation H − H0 is small in the sense of Kato.
The operator representing the total momentum of the system consisting of the electron

and the electromagnetic radiation field is given by

�P := �p + �P f , (I.23)



444 J. Fröhlich, A. Pizzo

with �p = −i �∇�x , and where

�P f :=
∑
λ=±

∫
d3k �k a∗

�k,λ a�k,λ (I.24)

is the momentum operator associated with the photon field.
The operators H and �P are essentially selfadjoint on a common domain, and since

the dynamics is invariant under translations, they commute, [H, �P] = �0. The Hilbert
space H can be decomposed into a direct integral over the joint spectrum, R

3, of the
three components of the momentum operator �P . Their spectral measure is absolutely
continuous with respect to Lebesgue measure, and hence we have that

H :=
∫ ⊕

H �P d3 P , (I.25)

where each fiber space H �P is a copy of Fock space F .

Remark. Throughout this paper, the symbol �P stands for both a vector in R
3 and the

vector operator on H, representing the total momentum, depending on context. Simi-
larly, a double meaning is given to arbitrary functions, f ( �P), of the total momentum
operator.

We recall that vectors � ∈ H are given by sequences

{�(m)(�x; �k1, λ1; . . . ; �km, λm)}∞m=0, (I.26)

of functions,�(m), where�(0)(�x) ∈ L2(R3), of the electron position �x and of m photon
momenta �k1, . . . , �km and helicities λ1, . . . , λm , with the following properties:

(i) �(m)(�x; �k1, λ1; . . . ; �km, λm) is totally symmetric in its m arguments
(�k j , λ j ) j=1,...,m ,

(ii) �(m) is square-integrable, for all m,
(iii) If � and � are two vectors in H, then

(�, �) =
∞∑

m=0

⎛
⎝ ∑
λ j =±

∫
d3x

m∏
j=1

d3k j �(m)(�x; �k1, λ1; . . . ; �km, λm)

×�(m)(�x; �k1, λ1; . . . ; �km, λm)

⎞
⎠ . (I.27)

We identify a square integrable function g(�x) with the sequence

{�(m)(�x; �k1, λ1; . . . ; �km, λm)}∞m=0, (I.28)

where �(0)(�x) ≡ g(�x), and �(m)(�x; �k1, λ1; . . . ; �km, λm) ≡ 0 for all m > 0; analo-
gously, a square integrable function g(m)(�x; �k1, λ1; . . . ; �km, λm), m ≥ 1, is identified
with the sequence

{�(m′)(�x; �k1, λ1; . . . ; �km′ , λm′)}∞m′=0, (I.29)
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where �(m)(�x; �k1, λ1; . . . ; �km, λm) ≡ g(m), and �(m
′)(�x; �k1, λ1; . . . ; �km′ , λm′) ≡ 0 for

all m′ �= m. From now on, a sequence describing a quantum state with a fixed number of
photons is identified with its nonzero component wave function; vice versa, a wave func-
tion corresponds to a sequence according to the previous identification. The elements of
the fiber space H �P∗ are obtained by linear combinations of the (improper) eigenvectors

of the total momentum operator �P with eigenvalue �P∗, e.g., the plane wave ei �P∗·�x is the
eigenvector describing a state with an electron and no photon.

Given any �P ∈ R
3, there is an isomorphism, I �P ,

I �P : H �P −→ Fb, (I.30)

from the fiber space H �P to the Fock space Fb, acted upon by the annihilation- and

creation operators b�k,λ, b∗
�k,λ, where b�k,λ corresponds to ei �k·�x a�k,λ, and b∗

�k,λ to e−i �k·�x a∗
�k,λ,

and with vacuum � f := I �P (e
i �P·�x ). To define I �P more precisely, we consider a vector

ψ
( f (n); �P) ∈ H �P with a definite total momentum describing an electron and n photons.

Its wave function in the variables (�x; �k1, λ1; . . . , �kn, λn) is given by

ei( �P−�k1−···−�kn)·�x f (n)(�k1, λ1; . . . ; �kn, λn), (I.31)

where f (n) is totally symmetric in its n arguments. The isomorphism I �P acts by way of

I �P
(

ei( �P−�k1−···−�kn)·�x f (n)(�k1, λ1; . . . ; �kn, λn)
)

= 1√
n!

∑
λ1,...,λn

∫
d3k1 . . . d

3kn f (n)(�k1, λ1; . . . ; �kn, λn) b∗
�k1,λ1

· · · b∗
�kn ,λn

� f . (I.32)

Because the Hamiltonian H commutes with the total momentum, it preserves the fibers
H �P for all �P ∈ R

3, i.e., it can be written as

H =
∫ ⊕

H �P d3 P, (I.33)

where

H �P : H �P −→ H �P . (I.34)

Written in terms of the operators b�k,λ, b∗
�k,λ, and of the variable �P , the fiber Hamiltonian

H �P is given by

H �P :=
( �P − �P f + α1/2 �A

)2

2
+ H f , (I.35)

where

�P f =
∑
λ

∫
d3k �k b∗

�k,λ b�k,λ , (I.36)

H f =
∑
λ

∫
d3k |�k|b∗

�k,λb�k,λ, (I.37)
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and

�A :=
∑
λ

∫
B


d3k√
|�k|

{
�ε�k,λb∗

�k,λ + �ε ∗
�k,λb�k,λ

}
. (I.38)

Let

S := { �P ∈ R
3 : | �P| < 1

3
}. (I.39)

In order to give a mathematically precise meaning to the constructions presented in the
following, we introduce an infrared cut-off at a photon frequency σ > 0 in the vector
potential. The calculation of the second derivative of the energy of a dressed electron –
in the following called the “ground state energy” – as a function of �P in the limit where
σ → 0, and for �P ∈ S, represents the main problem solved in this paper. Hence we
will, in the sequel, study the regularized fiber Hamiltonian

Hσ
�P :=

( �P − �P f + α1/2 �Aσ
)2

2
+ H f , (I.40)

acting on the fiber space H �P , for �P ∈ S, where

�Aσ :=
∑
λ

∫
B
\Bσ

d3k√
|�k|

{
�ε�k,λb∗

�k,λ + �ε ∗
�k,λb�k,λ

}
, (I.41)

and where Bσ is a ball of radius σ centered at the origin. In the following, we will
consider a sequence of infrared cutoffs

σ j := 
ε j (I.42)

with 0 < ε < 1
2 and j ∈ N0 := N ∪ {0}.

Notation. 1) We use the notation ‖A‖H = ‖A|H‖ for the norm of a bounded operator
A acting on a Hilbert space H. Typically, H will be some subspace of Fb.

2) Throughout the paper, we follow conventions such that

1

2π i

∮
γ

1

z
dz = −1 ,

∮
γ

1

z̄
d z̄ = (

∮
γ

1

z
dz),

where γ is an integration path in the complex space enclosing the origin.

I.2. Outline of the proof. Next, we outline the key ideas used in the proofs of our main
results in Eqs. (I.6), (I.8), and (I.9). For �P ∈ S, α small enough, and σ > 0, Eσ�P is an
isolated eigenvalue of Hσ

�P |Fσ
; see Sect. II and Eq. (II.4). Because of the analyticity of

Hσ
�P in the variable �P , it follows that
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∂2 Eσ| �P|
(∂| �P|)2 = ∂2

i Eσ| �P|| �P=Pi î

= 1 − 2

〈
1

2π i

∮
γσ

1

Hσ
�P − z

[
∂i Hσ

�P
] 1

Hσ
�P − z

dz�σ�P ,
[
∂i Hσ

�P
]
�σ�P

〉∣∣∣∣∣ �P=Pi î

, (I.43)

where ∂i = ∂/∂Pi , î is the unit vector in the direction i , �σ�P is the normalized ground
state eigenvector of Hσ

�P constructed in [6]; γσ is a contour path in the complex energy
plane enclosing Eσ�P and no other point of the spectrum of Hσ

�P |Fσ
, and such that the

distance of γσ from spec (Hσ
�P |Fσ

) is of order σ .
At first glance, the expression on the R.H. S. of (I.43) might become singular as

σ → 0, because the spectral gap above Eσ�P = inf spec (Hσ
�P |Fσ

) is of order σ . To
prove that the limit σ → 0 is, in fact, well defined, we make use of a σ -dependent
Bogoliubov transformation, Wσ ( �∇Eσ�P ) (see Sect. II, Eq. (II.3)). This transformation has
already been employed in [6] to analyze mass shell properties. In fact, conjugation of
Hσ

�P by Wσ ( �∇Eσ�P ) yields an infrared regularized Hamiltonian

K σ
�P := Wσ ( �∇Eσ�P )H

σ
�P W ∗

σ (
�∇Eσ�P ) (I.44)

with the property that the corresponding ground state, �σ�P , has a non-zero limit, as
σ → 0. The Hamiltonian K σ

�P has a “canonical form” derived in [6] (see also [12],
where a similar operator has been used in the analysis of the Nelson model):

K σ
�P =

(��σ�P )2
2

+
∑
λ

∫
R3

|�k|δσ�P (k̂)b∗
�k,λb�k,λd3k + Eσ�P , (I.45)

where δσ�P (k̂) is defined in Eq. (II.18), Eσ�P is a c-number defined in Eq. (II.42), and ��σ�P
is a vector operator defined in Eq. (II.40) starting from Eqs. (II.16), (II.17), (II.34). By
construction,

〈�σ�P , ��σ�P �σ�P 〉 = 0. (I.46)

This is a crucial property in the proof of existence of a limit of �σ�P as σ → 0.
Equation (I.46) is also an important ingredient in the proof of (I.6), because, by apply-

ing the unitary operator Wσ ( �∇Eσ�P ) to each term of the scalar product on the R.H.S. of
(I.43) and using (I.46) (see Sect. III), one finds that

(I.43) = 1 − 2
1

‖�σ j

�P ‖2
〈 1

2π i

∮
γ j

1

K
σ j

�P − z j

[
∂i E

σ j

�P − (�
σ j

�P )
i
] 1

K
σ j

�P − z j
dz j �

σ j

�P ,

[
∂i E

σ j

�P − (�
σ j

�P )
i
]
�
σ j

�P 〉| �P=Pi î (I.47)

= 1 − 2

〈
1

2π i

∮
γσ

1

K σ
�P − z

(�σ�P )
i 1

K σ
�P − z

dz
�σ�P

‖�σ�P‖ , (�
σ
�P )

i
�σ�P

‖�σ�P‖

〉∣∣∣∣∣ �P=Pi î

.

(I.48)
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Notice that, if one starts from the two expressions on the R.H.S. of Eq. (I.43) and on the
R.H.S. of Eq. (I.47) respectively, both formally expanded in powers of α1/2, the Bogo-
liubov transformation can be seen as a tool to re-collect an infinite number of terms and
to show a nontrivial identity, thanks only to Eq. (I.46) and to a vanishing contour inte-
gration (see Eq. (III.46)). Next, still using Eq. (I.46), one can show that (I.48) remains
uniformly bounded in σ .

To see this we use the inequality∣∣∣∣∣∣

〈
(�σ�P )

i �σ�P ,
(

1

K σ
�P − z

)2

(�σ�P )
i �σ�P

〉∣∣∣∣∣∣
≤ O( 1

α
1
2 σ 2δ

), (I.49)

for an arbitrarily small δ > 0, with z ∈ γσ and α small enough depending on δ. This
inequality will be proven inductively (see Theorem III.1) by introducing sequences of
infrared cut-offs σ j , where σ j → 0 as j → ∞. The proof by induction is combined
with an improved (as compared to the result in [6]) estimate of the rate of convergence
of {�σ�P } as σ → 0.

By telescoping, one can plug these improved estimates into (I.48) to end up with the
desired uniform bound. The control of the rate of convergence of the R.H.S. in (I.48), as
σ → 0, combined with the smoothness in �P , for arbitrary infrared cutoff σ > 0, finally
entails the Hölder-continuity in �P of the limiting quantity

�| �P| := 1− lim
σ→0

2

〈
1

2π i

∮
γσ

1

K σ
�P − z

(
�σ�P

)i 1

K σ
�P − z

dz
�σ�P

‖�σ�P‖ ,
(
�σ�P

)i �σ�P
‖�σ�P‖

〉∣∣∣∣∣ �P=Pi î

.

(I.50)

The Hölder-continuity in �P of�| �P| and of limσ→0
∂Eσ| �P|
∂| �P| , combined with the fundamental

theorem of calculus, imply that E �P is twice differentiable and
∂2 E| �P|
(∂| �P|)2 ≡ �| �P|.

Our paper is organized as follows: In Sect. II, we recall how to construct the ground
states of the Hamiltonians Hσ

�P and K σ
�P by iterative analytic perturbation theory. This

section contains an explicit derivation of the formula of the transformed Hamiltonians
and of related algebraic identities that will be used later on.

In Sect. III, we first derive inequality (I.49) and the improved convergence rate of
{�σ�P } as σ → 0, by using some key ingredients described in Sect. II. Section III.1 is
devoted to an analysis of (I.43) that culminates in the following main results.

Theorem. For α small enough and �P ∈ S,
∂2 Eσ| �P|
(∂| �P|)2 converges as σ → 0. The limiting

function �| �P| := limσ→0
∂Eσ| �P|
(∂| �P|)2 is Hölder continuous in �P ∈ S. The limit

lim
α→0

�| �P| = 1 (I.51)

holds true uniformly in �P ∈ S.

Corollary. For α small enough, the function E �P := limσ→0 Eσ�P , �P ∈ S, is twice
differentiable, and

∂2 E| �P|
(∂| �P|)2 = �| �P| for all �P ∈ S. (I.52)
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Remark. For the complete proof of the construction of the ground states of the Hamil-
tonians Hσ

�P and K σ
�P by iterative analytic perturbation theory, the reader is advised to

consult ref. [6].

II. Sequences of Ground State Vectors

In this section, we report on results contained in [6] concerning the ground states of the
Hamiltonians H

σ j

�P , where �P ∈ S and j ∈ N0, and the existence of a limiting vector for

the sequence of ground state vectors of the transformed Hamiltonians, K
σ j

�P , where the

Bogoliubov transformation used to obtain K
σ j

�P from H
σ j

�P (derived in [4]) is determined
by

b ∗
�k,λ → Wσ j (

�∇E
σ j

�P )b
∗
�k,λW ∗

σ j
( �∇E

σ j

�P ) = b ∗
�k,λ − α

1
2

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
, (II.1)

b�k,λ → Wσ j (
�∇E

σ j

�P )b�k,λW ∗
σ j
( �∇E

σ j

�P ) = b�k,λ − α
1
2

�∇E
σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)
, (II.2)

for �k ∈ B
\Bσ j , with

Wσ j (
�∇E

σ j

�P ) := exp

⎛
⎝α 1

2
∑
λ

∫
B
\Bσ j

d3k
�∇E

σ j

�P
|�k| 3

2 δ
σ j

�P (k̂)
· (�ε�k,λb∗

�k,λ − h.c.)

⎞
⎠ , (II.3)

where δ
σ j

�P (k̂) is defined in (II.18).

II.1. Ground states of the Hamiltonians H
σ j

�P . In [6], the first step consists in construct-

ing the ground states of the regularized fiber Hamiltonians H
σ j

�P . As shown in [6], H
σ j

�P
has a unique ground state, �

σ j

�P , that can be constructed by iterative analytic perturba-
tion theory, as developed in [12]. To recall how this method works some preliminary
definitions and results are needed:

• We introduce the Fock spaces

Fσ j := Fb(L2((R3\Bσ j )× Z2)) , Fσ j
σ j+1 := Fb(L2((Bσ j \Bσ j+1)× Z2)).

(II.4)

Note that

Fσ j+1 = Fσ j ⊗ Fσ j
σ j+1 . (II.5)

If not specified otherwise, � f denotes the vacuum state in any one of these Fock
spaces. Any vector φ in Fσ j can be identified with the corresponding vector, φ⊗� f ,

in F , where � f is the vacuum in Fσ j
0 .
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Fig. 1. The contour integral in the energy plane and the gaps

• Momentum-slice interaction Hamiltonians are defined by

�H �P |σ j
σ j+1 := α

1
2 �∇ �P H

σ j

�P · �A|σ j
σ j+1 +

α

2
( �A|σ j

σ j+1)
2, (II.6)

where

�A|σ j
σ j+1 :=

∑
λ

∫
Bσ j \Bσ j+1

d3k√
|�k|

{
�ε�k,λb∗

�k,λ + �ε ∗
�k,λb�k,λ

}
. (II.7)

• Four real parameters, ε, ρ+, ρ−, and µ, will appear in our analysis. They have the
properties

0 < ρ− < µ < ρ+ < 1 − Cα <
2

3
, (II.8)

0 < ε <
ρ−

ρ+ , (II.9)

where Cα , with 1
3 < Cα < 1, for α small enough, is a constant such that the inequality

Eσ�P−�k > Eσ�P − Cα|�k| (II.10)

holds for all �P ∈ S and any �k �= 0. Here Eσ�P−�k := inf specHσ
�P−�k . We note that

Cα → 1
3 , as α → 0 (see Statement (I4) of Theorem 3.1 in [6]).

By iterative analytic perturbation theory (see [6]), one derives the following results,
valid for sufficiently small α, depending on our choice of
, ε, ρ−, µ, and ρ+ (see also
Fig. 1):

(A1) E
σ j

�P is an isolated simple eigenvalue of H
σ j

�P |Fσ j
with spectral gap larger or equal

to ρ−σ j . Furthermore, E
σ j

�P is also the ground state energy of H
σ j

�P |Fσ j+1
, and it

is an isolated simple eigenvalue of H
σ j

�P |Fσ j+1
with spectral gap larger or equal to

ρ+σ j+1.
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(A2) The ground-state energies E
σ j

�P and E
σ j+1

�P of the Hamiltonians H
σ j

�P and H
σ j+1

�P ,
respectively, (acting on the same space Fσ j+1 ) satisfy the inequalities

0 ≤ E
σ j+1

�P ≤ E
σ j

�P + c α σ 2
j , (II.11)

where c > 0 is independent of j and of α.
(A3) The ground state vectors, �

σ j+1

�P , of H
σ j+1

�P can be recursively constructed starting

from �
σ0
�P ≡ � f with the help of the spectral projection

1

2π i

∮
γ j+1

dz j+1
1

H
σ j+1

�P − z j+1
.

More precisely,

�
σ j+1

�P := 1

2π i

∮
γ j+1

dz j+1
1

H
σ j+1

�P − z j+1
�
σ j

�P (II.12)

= 1

2π i

∞∑
n=0

∮
γ j+1

dz j+1
1

H
σ j

�P − z j+1

×
[
−�H �P |σ j

σ j+1

1

H
σ j

�P − z j+1

]n

�
σ j

�P , (II.13)

where γ j+1 := {z j+1 ∈ C | |z j+1 − E
σ j

�P | = µσ j+1}, with µ as in (II.8). �
σ j+1

�P is

the (unnormalized) ground state vector of H
σ j+1

�P |Fσ
for any 0 ≤ σ ≤ σ j+1.

II.2. Transformed Hamiltonians. In this section, we consider the (Bogoliubov-trans-
formed) Hamiltonians

K
σ j

�P := Wσ j (
�∇E

σ j

�P )H
σ j

�P W ∗
σ j
( �∇E

σ j

�P ) (II.14)

with ground state vectors �
σ j

�P , j = 0, 1, 2, 3, . . .. Some algebraic manipulations to

express K
σ j

�P in a “canonical form” appear to represent a crucial step before iterative
perturbation theory can be applied to the sequence of these transformed Hamiltonians.
In addition, some intermediate Hamiltonians, denoted K̂

σ j

�P , must be introduced to arrive
at the right kind of convergence estimates.

The same algebraic relations that are used to obtain the “canonical form” of K
σ j

�P also
play an important role in the proof of our main result concerning the limiting behavior,
as σ → 0, of the second derivative of the ground state energy Eσ�P . It is therefore useful to

derive the “canonical form” of K
σ j

�P and the relevant algebraic identities in some detail.

The Feynman-Hellman formula (which holds because (H
σ j

�P ) �P∈S is an analytic fam-

ily of type A, and E
σ j

�P is an isolated eigenvalue of H
σ j

�P |Fσ
, 0 < σ ≤ σ j ) yields the

identity

�∇E
σ j

�P = �P − 〈 �P f − α
1
2 �Aσ j 〉

ψ
σ j
�P
, (II.15)
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where, given an operator B and a vector ψ in the domain of B, we use the notation

〈B〉ψ := 〈ψ, B ψ〉
〈ψ, ψ〉 . (II.16)

As stated in [6], for α small enough,

sup
�P∈S

| �∇E
σ j

�P | < 1 ∀ j ∈ N0.

We define

�βσ j := �P f − α
1
2 �Aσ j , (II.17)

δ
σ j

�P (k̂) := 1 − k̂ · �∇E
σ j

�P , k̂ := �k
|�k| , | �∇E

σ j

�P | < 1, (II.18)

c ∗
�k,λ := b ∗

�k,λ + α
1
2

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
, (II.19)

c�k,λ := b�k,λ + α
1
2

�∇E
σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)
. (II.20)

We rewrite H
σ j

�P as

H
σ j

�P = ( �P − �βσ j )2

2
+ H f , (II.21)

and, using (II.15) and (II.17),

�P = �∇E
σ j

�P + 〈 �βσ j 〉
ψ
σ j
�P
. (II.22)

We then obtain

H
σ j

�P = �P2

2
− ( �∇E

σ j

�P + 〈 �βσ j 〉
ψ
σ j
�P
) · �βσ j +

�βσ j
2

2
+ H f (II.23)

= �P2

2
+

�βσ j
2

2
− 〈 �βσ j 〉

ψ
σ j
�P

· �βσ j (II.24)

+
∑
λ

∫
R3\(B
\Bσ j )

|�k|δσ j

�P (k̂)b
∗
�k,λb�k,λd3k (II.25)

+
∑
λ

∫
B
\Bσ j

|�k|δσ j

�P (k̂)c
∗
�k,λc�k,λd3k (II.26)

−α
∑
λ

∫
B
\Bσ j

|�k|δσ j

�P (k̂)
�∇E

σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
d3k. (II.27)
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Adding and subtracting 1/2 〈 �βσ j 〉2
ψ
σ j
�P

, one finds that

H
σ j

�P = �P2

2
−

〈 �βσ j 〉2
ψ
σ j
�P

2
+
( �βσ j − 〈 �βσ j 〉

ψ
σ j
�P
)2

2
(II.28)

+
∑
λ

∫
R3\(B
\Bσ j )

|�k|δσ j

�P (k̂)b
∗
�k,λb�k,λd3k (II.29)

+
∑
λ

∫
B
\Bσ j

|�k|δσ j

�P (k̂)c
∗
�k,λc�k,λd3k (II.30)

−α
∑
λ

∫
B
\Bσ j

|�k|δσ j

�P (k̂)
�∇E

σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
d3k. (II.31)

Next, we implement the Bogoliubov transformation

b ∗
�k,λ → Wσ j (

�∇E
σ j

�P )b
∗
�k,λW ∗

σ j
( �∇E

σ j

�P ) = b ∗
�k,λ − α

1
2

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
, (II.32)

b�k,λ → Wσ j (
�∇E

σ j

�P )b�k,λW ∗
σ j
( �∇E

σ j

�P ) = b�k,λ − α
1
2

�∇E
σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)
, (II.33)

for �k ∈ B
\Bσ j , where Wσ j (
�∇E

σ j

�P ) is defined in (II.3). It is evident that Wσ j acts as the

identity on Fb(L2(Bσ j × Z2)) and on Fb(L2((R3\B
)× Z2)).
We define the vector operators

��σ j

�P := Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )

−〈Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )〉� f , (II.34)

noting that, by (II.15), (II.17), and (II.34),

〈 �βσ j 〉
ψ
σ j
�P

= �P − �∇E
σ j

�P (II.35)

=
〈�σ j

�P ,
��σ j

�P �
σ j

�P 〉
〈�σ j

�P , �
σ j

�P 〉 + 〈Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )〉� f , (II.36)

where �
σ j

�P is the ground state of the Bogoliubov-transformed Hamiltonian

K
σ j

�P := Wσ j (
�∇E

σ j

�P )H
σ j

�P W ∗
σ j
( �∇E

σ j

�P ). (II.37)

Notice that in (II.36) only the ray of�
σ j

�P enters. The sequence of vectors {�σ j

�P } is defined
in Section II.3.
It is easy to see that

Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )− 〈 �βσ j 〉
�
σ j
�P

= ��σ j

�P − 〈 ��σ j

�P 〉
�
σ j
�P
. (II.38)
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After inspecting straightforward operator domain questions (see [6]), the “canonical
form” of K

σ j

�P is given by

K
σ j

�P =
(��σ j

�P )
2

2
+
∑
λ

∫
R3

|�k|δσ j

�P (k̂)b
∗
�k,λb�k,λd3k + Eσ j

�P , (II.39)

where

��σ j

�P := ��σ j

�P − 〈 ��σ j

�P 〉
�
σ j
�P
, (II.40)

so that

〈��σ j

�P 〉
�
σ j
�P

= 0, (II.41)

and

Eσ j

�P := �P2

2
−
( �P − �∇E

σ j

�P )
2

2

−α
∑
λ

∫
B
\Bσ j

|�k|δσ j

�P (k̂)
�∇E

σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
d3k. (II.42)

Equation (II.39) follows by using that

Wσ j (
�∇E

σ j

�P )c
∗
�k,λW ∗

σ j
( �∇E

σ j

�P ) = b ∗
�k,λ, (II.43)

Wσ j (
�∇E

σ j

�P )c�k,λW ∗
σ j
( �∇E

σ j

�P ) = b�k,λ, (II.44)

for �k ∈ B
\Bσ j .

An intermediate Hamiltonian, K̂
σ j+1

�P , is defined by

K̂
σ j+1

�P := Wσ j+1(
�∇E

σ j

�P )H
σ j+1

�P W ∗
σ j+1

( �∇E
σ j

�P ), (II.45)

where

Wσ j+1(
�∇E

σ j

�P ) := exp

⎛
⎝α 1

2
∑
λ

∫
B
\Bσ j+1

d3k
�∇E

σ j

�P
|�k| 3

2 δ
σ j

�P (k̂)
· (�ε�k,λb∗

�k,λ − h.c.)

⎞
⎠ . (II.46)

We decompose K̂
σ j+1

�P into several different terms, similarly as K
σ j

�P . We recall that

H
σ j+1

�P = ( �P − �βσ j+1)2

2
+ H f , (II.47)

and, by (II.35),

�P = �∇E
σ j

�P + 〈 �βσ j 〉
ψ
σ j
�P
. (II.48)
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It follows that (see also (II.28)–(II.31))

H
σ j+1

�P = �P2

2
− ( �∇E

σ j

�P + 〈 �βσ j 〉
ψ
σ j
�P
) · �βσ j+1 +

�βσ j+1
2

2
+ H f (II.49)

= �P2

2
+

�βσ j+1
2

2
− 〈 �βσ j 〉

ψ
σ j
�P

· �βσ j+1 (II.50)

+
∑
λ

∫
R3\(B
\Bσ j+1 )

|�k|δσ j

�P (k̂)b
∗
�k,λb�k,λd3k (II.51)

+
∑
λ

∫
B
\Bσ j+1

|�k|δσ j

�P (k̂)c
∗
�k,λc�k,λd3k (II.52)

−α
∑
λ

∫
B
\Bσ j+1

|�k|δσ j

�P (k̂)
�∇E

σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
d3k. (II.53)

We now add and subtract 1/2 〈 �βσ j 〉2
ψ
σ j
�P

and conjugate the resulting operator with the uni-

tary operator Wσ j+1(
�∇E

σ j

�P ). After inspecting straightforward operator domain questions
(see [6]), we find that

K̂
σ j+1

�P =
(��σ j

�P + �Lσ j
σ j+1 + �Iσ j

σ j+1)
2

2
(II.54)

+
∑
λ

∫
R3

|�k|δσ j

�P (k̂)b
∗
�k,λb�k,λd3k + Êσ j+1

�P , (II.55)

where

�Lσ j
σ j+1 := −α 1

2
∑
λ

∫
Bσ j \Bσ j+1

�k
�∇E

σ j

�P · �ε ∗
�k,λb�k,λ + h.c.

|�k| 3
2 δ
σ j

�P (k̂)
d3k, (II.56)

−α 1
2 �A|σ j

σ j+1 (II.57)

�Iσ j
σ j+1 := α

∑
λ

∫
Bσ j \Bσ j+1

�k
�∇E

σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
d3k

+ α
∑
λ

∫
Bσ j \Bσ j+1

[�ε�k,λ
�∇E

σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
+ h.c.] d3k√

|�k|
, (II.58)

Êσ j+1

�P := �P2

2
−
( �P − �∇E

σ j

�P )
2

2

−α
∑
λ

∫
B
\Bσ j+1

|�k|δσ j

�P (k̂)
�∇E

σ j

�P · �ε�k,λ
|�k| 3

2 δ
σ j

�P (k̂)

�∇E
σ j

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j

�P (k̂)
d3k. (II.59)

We also define the operators

�̂�σ j

�P := Wσ j (
�∇E

σ j−1

�P )W ∗
σ j
( �∇E

σ j

�P )
��σ j

�P Wσ j (
�∇E

σ j

�P )W
∗
σ j
( �∇E

σ j−1

�P ), (II.60)
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and

�̂�σ j

�P := �̂�σ j

�P − 〈 �̂�σ j

�P 〉
�̂
σ j
�P
, (II.61)

which are used in the proofs of convergence of the ground state vectors. Here, �̂
σ j

�P
denotes the ground state vector of the Hamiltonian

K̂
σ j

�P := Wσ j (
�∇E

σ j−1

�P )W ∗
σ j
( �∇E

σ j

�P )K
σ j

�P Wσ j (
�∇E

σ j

�P )W
∗
σ j
( �∇E

σ j−1

�P ).

(The sequence of vectors {�̂σ j

�P } is defined in (II.64).)
Notice that

�̂�σ j

�P = Wσ j (
�∇E

σ j−1

�P )W ∗
σ j
( �∇E

σ j

�P )
��σ j

�P Wσ j (
�∇E

σ j

�P )W
∗
σ j
( �∇E

σ j−1

�P ). (II.62)

An important identity used in [6] and in the sequel of the present paper is ( j ≥ 1)

�̂�σ j

�P − ��σ j−1

�P = �∇E
σ j

�P − �∇E
σ j−1

�P + �Lσ j−1
σ j

+ α
∑
λ

∫
Bσ j−1\Bσ j

�k
�∇E

σ j−1

�P · �ε�k,λ
|�k| 3

2 δ
σ j−1

�P (k̂)

�∇E
σ j−1

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j−1

�P (k̂)
d3k

+ α
∑
λ

∫
Bσ j−1\Bσ j

[�ε�k,λ
�∇E

σ j−1

�P · �ε ∗
�k,λ

|�k| 3
2 δ
σ j−1

�P (k̂)
+ h.c.] d3k√

|�k|
. (II.63)

Equation (II.63) can be derived using (II.34), (II.36), (II.38), (II.40), (II.60), and (II.61).

II.3. Convergence of the sequence {�σ j

�P }∞j=0. We start from �
σ0
�P ≡ � f . To pass from

momentum scale j to j + 1, we proceed in two steps: First, we construct an intermediate
vector, �̂

σ j+1

�P , defined by

�̂
σ j+1

�P :=
∞∑

n=0

1

2π i

∮
γ j+1

dz j+1
1

K
σ j

�P − z j+1
[−�K �P |σ j

σ j+1

1

K
σ j

�P − z j+1
]n�

σ j

�P , (II.64)

where

�K �P |σ j
σ j+1 := K̂

σ j+1

�P − Êσ j+1

�P + Eσ j

�P − K
σ j

�P (II.65)

= 1

2

(��σ j

�P · ( �Lσ j
σ j+1 + �Iσ j

σ j+1) + h.c.
)

+
1

2
( �Lσ j
σ j+1 + �Iσ j

σ j+1)
2. (II.66)

Subsequently, we construct �
σ j+1

�P by setting

�
σ j+1

�P := Wσ j+1(
�∇E

σ j+1

�P )W ∗
σ j+1

( �∇E
σ j

�P )�̂
σ j+1

�P . (II.67)

The series in (II.64) is term-wise well-defined and converges strongly to a non-zero
vector, provided α is small enough (independently of j). The proof of this claim is based
on operator-norm estimates of the type used in controlling the Neumann expansion in
(II.13), which requires an estimate of the spectral gap that follows from the unitarity of
Wσ j (

�∇E
σ j

�P ) and Result (A1) described after Eq. (II.10).
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A key point in our proof of convergence of the sequence {�σ j

�P } is to show that the
term

��σ j

�P · ( �Lσ j
σ j+1 + �Iσ j

σ j+1) + h.c. (II.68)

appearing in (II.66), which is superficially “marginal” in the infrared, by power counting,
is in fact “irrelevant” (using the terminology of renormalization group theory). This is a
consequence of the orthogonality condition

〈�σ j

�P ,
��σ j

�P �
σ j

�P 〉 = 0, (II.69)

which, when combined with an inductive argument, implies that

‖( 1

K
σ j

�P − z j+1
)

1
2 [��σ j

�P · ( �Lσ j (+)
σ j+1 + �Iσ j

σ j+1)] (
1

K
σ j

�P − z j+1
)

1
2 �

σ j

�P ‖ (II.70)

(where �Lσ j (+)
σ j+1 stands for the part which contains only photon creation operators) is of

order O(εη j ), for some η > 0 specified in [6]. In particular, this suffices to show that

‖�̂σ j+1

�P −�
σ j

�P ‖ ≤ O(ε j+1
2 (1−δ)) (II.71)

for any 0 < δ < 1 provided α is sufficiently small. Finally, in Theorem 3.1 of ref.
[6], it is proven that there is a non-zero vector in the Hilbert space corresponding to

lim j→∞�
σ j

�P , and that the rate of convergence is at least O(σ 1
2 (1−δ)) for any 0 < δ < 1

provided α is sufficiently small.

Remark. In Theorem 3.1 of ref. [6], for lim j→∞�
σ j

�P , the range of values of α such

that the rate of convergence, O(σ 1
2 (1−δ)), holds is not claimed to be uniform in δ. The

stronger result obtained in the next section (see (III.3) and (III.34)) implies that this

range (corresponding to the rate O(σ 1
2 (1−δ))) is actually δ-independent.

II.3.1. Key ingredients. To prove convergence of the sequence {�σ j

�P } of ground state

vectors of the Hamiltonians K
σ j

�P , some further conditions on α, ε, and µ (see (II.8),
(II.9)) are required, in particular an upper bound on µ and an upper bound on ε strictly
smaller than the ones imposed by inequalities (II.8), (II.9) (for details, see Lemma A.3
in [6]). We note that the more restrictive conditions on µ and ε imply new bounds on

ρ− and ρ+. Moreover, ε must satisfy a lower bound ε > Cα
1
2 , with a multiplicative

constant C > 0 sufficiently large.
Some key inequalities needed in our analysis of the convergence properties of {�σ j

�P }
are summarized below. They will be marked by the symbol (B). In order to reach some
important improvements in our estimates of the convergence rate of �

σ j

�P , as j → ∞
(discussed in the next section), a refined estimate is needed that is stated in (B2), and a
new inequality, see (B5), (analogous to (B3) and (B4)) is required.

• Estimates on the shift of the ground state energy and its gradient. There are constants
C1, C ′

2 such that the following inequalities hold: (B1)

|Eσ j

�P − E
σ j+1

�P | ≤ C1 α ε
j , (II.72)

see [6].
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• (B2)

| �∇E
σ j+1

�P − �∇E
σ j

�P | ≤ C ′
2

(
‖�̂σ j+1

�P −�
σ j

�P ‖ + α
1
4 ε j+1

)
. (II.73)

This is an improvement over a corresponding estimate in [6]: It can be proven after
the results stated in Theorem 3.1 in [6], in particular the uniform bound from below
on 〈�σ j

�P ,�
σ j

�P 〉, 〈�σ j

�P ,�
σ j

�P 〉 > 2
3 , and following the steps in the proof of Lemma A.2

in [6].
• Bounds relating expectations of operators to expectations of their absolute values.

There are constants C3,C4,C5 > 1 such that the following inequalities hold:
(B3) For z j+1 ∈ γ j+1,

〈
(�
σ j

�P )
i �

σ j

�P ,
∣∣∣∣∣

1

K
σ j

�P − z j+1

∣∣∣∣∣ (�
σ j

�P )
i �

σ j

�P

〉
(II.74)

≤ C3

∣∣∣∣∣

〈
(�
σ j

�P )
i �

σ j

�P ,
1

K
σ j

�P − z j+1
(�
σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣ , (II.75)

where (�
σ j

�P )
i is the i th component of ��σ j

�P .
(B4) For z j+1 ∈ γ j+1,

〈
(Lσ j (+)
σ j+1 )

l (�
σ j

�P )
i �

σ j

�P ,
∣∣∣∣∣

1

K
σ j

�P − z j+1

∣∣∣∣∣ (L
σ j (+)
σ j+1 )

l (�
σ j

�P )
i �

σ j

�P

〉
(II.76)

≤ C4

∣∣∣∣∣

〈
(Lσ j (+)
σ j+1 )

l (�
σ j

�P )
i �

σ j

�P ,
1

K
σ j

�P − z j+1
(Lσ j (+)
σ j+1 )

l (�
σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣ , (II.77)

where (Lσ j (+)
σ j+1 )

l is the lth component of �Lσ j (+)
σ j+1 .

(B5) For z j+1 ∈ γ j+1,

〈
(�
σ j

�P )
i �

σ j

�P ,
∣∣∣∣∣

1

K
σ j

�P − z j+1

∣∣∣∣∣
2

(�
σ j

�P )
i �

σ j

�P

〉

≤ C5

∣∣∣∣∣

〈
(�
σ j

�P )
i �

σ j

�P , (
1

K
σ j

�P − z j+1
)2(�

σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣ . (II.78)

To prove (B3) and (B4), it suffices to exploit the fact that the spectral support (with
respect to K

σ j

�P |Fσ j
and to K

σ j

�P |Fσ j+1
, respectively) of the two vectors (�

σ j

�P )
i �

σ j

�P and

(Lσ j (+)
σ j+1 )

l(�
σ j

�P )
i �

σ j

�P is strictly above the ground state energy of K
σ j

�P , since they are both

orthogonal to the ground state, �
σ j

�P , of this operator. In the proof of bound (B5), it is

also required that ρ− > 3µε, as will be assumed in the following.

Remarks. (1) The constants C1, . . . ,C5 are independent of α, ε, µ, and j ∈ N, pro-
vided that α, ε, and µ are sufficiently small.
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(2) For the convenience of the reader, we recapitulate the relations between the param-
eters entering the construction:

0 < ρ− < µ < ρ+ < 1 − Cα <
2

3
, (II.79)

0 < ε <
ρ−

ρ+ , (II.80)

ε > Cα1/2, (II.81)

ρ− > 3µε. (II.82)

Moreover, we stress that the final result is a small coupling result, i.e., valid for
small values ofα, and that, for technical reasons, small values of the parameters ε, µ
within the constraints listed above (that imply more restrictive bounds on ρ−, ρ+)
are required.

The crucial estimate for the bound on �̂
σ j+1

�P −�
σ j

�P obtained in [6] (see (II.71)) is

∣∣∣∣∣

〈
(�
σ j

�P )
i �

σ j

�P ,
1

K
σ j

�P − z j+1
(�
σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣ ≤ R0

αε jδ
, (II.83)

where R0 is independent of j , and δ, 0 < δ < 1, can be taken arbitrarily small for α and
ε sufficiently small (depending on δ). This estimate will be improved in the next section.
As a consequence, our estimate of the convergence rate of {�σ j

�P } will be improved. As
a corollary, the second derivative of Eσ�P is proven to converge, as σ → 0.

III. Improved Estimate of the Convergence Rate of {�σ
�P }, as σ→0,

and Uniform Bound on the Second Derivative of Eσ
�P .

Our arguments in Sect. III rely on the results previously proven in [6] and described
in Sect. II, which hold for α small enough. Therefore, in the following, we assume the
constraints (II.79)–(II.82), and we make use of the estimates on the spectral gaps (see
(A1) in Sect. II.1) and of the bounds (B1)–(B5) (see Sect. II.3.1).

We also make use of the lower bounds

〈�̂σ j+1

�P , �̂
σ j+1

�P 〉, 〈�σ j

�P ,�
σ j

�P 〉 > 2

3
(III.1)

uniformly in j ∈ N0, which appear in the proof of Theorem 3.1 of ref. [6]. Assuming
these bounds we can simplify the proof by induction in the theorem below.

Theorem III.1. For α, ε sufficiently small (depending on δ), ε > Cα
1
16 with C > 0, the

inequality

∣∣∣∣∣∣

〈
(�
σ j

�P )
i �

σ j

�P ,
(

1

K
σ j

�P − z j+1

)2

(�
σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣∣
≤ R0

α
1
2 ε2 jδ

(III.2)
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holds true, where 0 < δ < 1 and R0, O(ε2) > R0 > O(α
3
8 ), is independent of

j ∈ N0 := N ∪ 0, and

‖�̂σ j

�P −�
σ j−1

�P ‖ ≤ α
1
4 ε j (1−δ). (III.3)

R0 can be taken arbitrarily small provided α is small enough.

Proof by induction. • Inductive hypothesis. We assume that, at scale j − 1(≥ 0), the
following estimate holds:

∣∣∣∣∣∣

〈
(�
σ j−1

�P )i �
σ j−1

�P ,

(
1

K
σ j−1

�P − z j

)2

(�
σ j−1

�P )i �
σ j−1

�P

〉∣∣∣∣∣∣
≤ R0

α
1
2 ε2( j−1)δ

. (III.4)

This estimate readily implies that, assuming R0/ε
2 and α small enough, uniformly

in j ,

‖�̂σ j

�P −�
σ j−1

�P ‖ (III.5)

=
∥∥∥∥∥

∞∑
n=1

1

2π i

∮
γ j

dz j
1

K
σ j−1

�P − z j

[
−�K �P |σ j−1

σ j

1

K
σ j−1

�P − z j

]n

�
σ j−1

�P

∥∥∥∥∥
≤ α

1
4 ε j (1−δ). (III.6)

An improved estimate on ‖�̂σ j

�P − �
σ j−1

�P ‖ is based on the following bounds where

ε > Cα
1
16 :

i) ∥∥∥∥∥
1

K
σ j−1

�P − z j
�K �P |σ j−1

σ j �
σ j−1

�P

∥∥∥∥∥ ≤ O(R
1
2
0 α

1
4 ε( j−1)(1−δ) + αε2 j−3), (III.7)

whose proof requires the use of the “pull-through formula” (see, e.g., [14]), a
Neumann expansion of the resolvent, the inequality in Eq. (II.78), and
Eq. (III.4); the reader can follow the similar steps used in Lemma A3 of ref.
[6];

ii) ∥∥∥∥∥
1

K
σ j−1

�P − z j
�K �P |σ j−1

σ j

∥∥∥∥∥
Fσ j

≤ O(α 1
2 /ε) ; (III.8)

this estimate can be derived from standard bounds and using the “pull-through
formula”.

• Induction step from scale j −1 to scale j . By unitarity of Wσ j (
�∇E

σ j−1

�P )W ∗
σ j
( �∇E

σ j

�P ),
we have that ∣∣∣∣∣∣

〈
(�
σ j

�P )
i �

σ j

�P ,
(

1

K
σ j

�P − z j+1

)2

(�
σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣∣

=
∣∣∣∣∣∣

〈
(�̂
σ j

�P )
i �̂

σ j

�P ,
(

1

K̂
σ j

�P − z j+1

)2

(�̂
σ j

�P )
i �̂

σ j

�P

〉∣∣∣∣∣∣
. (III.9)
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For α small enough and ε > C α
1
2 , where C > 0 is large enough, we may use (B1)

to re-expand the resolvent and find that
∣∣∣∣∣∣

〈
(�̂
σ j

�P )
i �̂

σ j

�P ,
(

1

K̂
σ j

�P − z j+1

)2

(�̂
σ j

�P )
i �̂

σ j

�P

〉∣∣∣∣∣∣
(III.10)

≤ 2

∣∣∣∣∣∣

〈
(�̂
σ j

�P )
i �̂

σ j

�P ,
∣∣∣∣∣

1

K
σ j−1

�P − z j+1

∣∣∣∣∣
2

(�̂
σ j

�P )
i �̂

σ j

�P

〉∣∣∣∣∣∣
. (III.11)

It follows that

2

∣∣∣∣∣∣

〈
(�̂
σ j

�P )
i �̂

σ j

�P ,
∣∣∣∣∣

1

K
σ j−1

�P − z j+1

∣∣∣∣∣
2

(�̂
σ j

�P )
i �̂

σ j

�P

〉∣∣∣∣∣∣
(III.12)

≤ 4

∥∥∥∥∥

∣∣∣∣∣
1

K
σ j−1

�P − z j+1

∣∣∣∣∣ ((�̂
σ j

�P )
i �̂

σ j

�P − (�
σ j−1

�P )i�
σ j−1

�P )

∥∥∥∥∥
2

(III.13)

+ 4

∣∣∣∣∣∣

〈
(�
σ j−1

�P )i �
σ j−1

�P ,

∣∣∣∣∣
1

K
σ j−1

�P − z j+1

∣∣∣∣∣
2

(�
σ j−1

�P )i �
σ j−1

�P

〉∣∣∣∣∣∣
. (III.14)

Our recursion, combined with (II.78), relates (III.14) to the initial expression in
(III.2), with j replaced by j − 1, while (III.13) is a remainder term. Next we note
that

4

∥∥∥∥∥

∣∣∣∣∣
1

K
σ j−1

�P − z j+1

∣∣∣∣∣ ((�̂
σ j

�P )
i �̂

σ j

�P − (�
σ j−1

�P )i�
σ j−1

�P )

∥∥∥∥∥
2

(III.15)

≤ 8

∥∥∥∥∥

∣∣∣∣∣
1

K
σ j−1

�P − z j+1

∣∣∣∣∣ ((�̂
σ j

�P )
i �̂

σ j

�P − (�
σ j−1

�P )i �̂
σ j

�P )
∥∥∥∥∥

2

(III.16)

+ 8

∥∥∥∥∥

∣∣∣∣∣
1

K
σ j−1

�P − z j+1

∣∣∣∣∣ (�
σ j−1

�P )i (�̂
σ j

�P −�
σ j−1

�P )

∥∥∥∥∥
2

(III.17)

≤ R1

ε2 jδ
+

R2

ε2 jδ
. (III.18)

Here R1 ≤ O(ε−2) and R2 ≤ O(ε−2) are constants independent of α,µ, and j ∈ N,

provided that α is sufficiently small and ε > Cα
1
16 . In detail:

– Property (B4) and the two norm-bounds

‖ 1

K
σ j−1

�P − z j+1
(�
σ j−1

�P )i‖Fσ j
≤ O(ε−( j+1)), ‖�̂σ j

�P −�
σ j−1

�P ‖ ≤ α
1
4 ε j (1−δ)

(III.19)

(see (III.5)) justify the step from (III.17) to (III.18);
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– Concerning the step from (III.16) to (III.18), it is enough to consider Eq. (II.63)
and the two bounds

‖(Lσ j−1
σ j )i �̂

σ j

�P ‖ ≤ O(α 1
2 ε j−1), ‖�̂σ j

�P −�
σ j−1

�P ‖ ≤ α
1
4 ε j (1−δ). (III.20)

(Hint: for the first inequality in (III.20), use the expression in (II.64).)
To bound the term (III.14), we use (B5) and the key orthogonality property (II.69).
For z j ∈ γ j and z j+1 ∈ γ j+1, we find that for ε/ρ− sufficiently small,

4

∣∣∣∣∣∣

〈
(�
σ j−1

�P )i �
σ j−1

�P ,

∣∣∣∣∣
1

K
σ j−1

�P − z j+1

∣∣∣∣∣
2

(�
σ j−1

�P )i �
σ j−1

�P

〉∣∣∣∣∣∣
(III.21)

≤ 4C5

∣∣∣∣∣∣

〈
(�
σ j−1

�P )i �
σ j−1

�P ,

(
1

K
σ j−1

�P − z j+1

)2

(�
σ j−1

�P )i �
σ j−1

�P

〉∣∣∣∣∣∣
(III.22)

≤ 8C2
5

∣∣∣∣∣∣

〈
(�
σ j−1

�P )i �
σ j−1

�P ,

(
1

K
σ j−1

�P − z j

)2

(�
σ j−1

�P )i �
σ j−1

�P

〉∣∣∣∣∣∣
. (III.23)

In passing from (III.22) to (III.23), we again use the constraint on the spectral support
(with respect to K

σ j−1

�P |Fσ j−1
) of the vector (�

σ j−1

�P )i �
σ j−1

�P .
Assuming that the parameters ε and α are so small that the previous constraints

are fulfilled and that

0 < R1 + R2 ≤ (1 − 8C2
5ε

2δ)
R0

α
1
2

, (III.24)

we then conclude that
∣∣∣∣∣∣

〈
(�
σ j

�P )
i �

σ j

�P ,
(

1

K̂
σ j

�P − z j+1

)2

(�
σ j

�P )
i �

σ j

�P

〉∣∣∣∣∣∣
(III.25)

≤ R1

ε2 jδ
+

R2

ε2 jδ
(III.26)

+ 8C2
5

∣∣∣∣∣∣

〈
(�
σ j−1

�P )i �
σ j−1

�P ,

(
1

K
σ j−1

�P − z j

)2

(�
σ j−1

�P )i �
σ j−1

�P

〉∣∣∣∣∣∣
(III.27)

≤ R0

α
1
2 ε2 jδ

. (III.28)

Notice that the bound in (III.24) induces a δ−dependent constraint on the admissi-
ble values of ε and, indirectly, on α. Moreover, the bound in (III.24) is fulfilled if

(O(ε2) >)R0 > O(α
3
8 ) ≥ O(α

1
2
ε2 ) as α → 0.

• The zeroth step in the induction. Since

(�
σ0
�P )

i ≡ ( �P f )i , �
σ0
�P ≡ � f , (III.29)
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inequality (III.2) is trivially fulfilled for j = 0; thus (III.2) holds for all j ∈ N0 and
for R0 arbitrarily small, provided α is small enough. ��
As we explain below, an improved estimate of the rate of convergence of the sequence

{�σ j

�P }∞j=0 follows from the bound in (III.3), but we stress that only the estimates in
Eqs. (III.2), (III.3) will be used for the uniform bound on the second derivative of Eσ�P
in the next section.

In fact, one can combine the bound in Eq. (III.3) with the estimate

‖�σ j

�P − �̂
σ j

�P ‖ ≤ C α
1
2 | �∇E

σ j−1

�P − �∇E
σ j

�P | | ln(ε j )|, (III.30)

where C is independent of α, ε, µ, and j ∈ N, provided that α, ε, and µ are sufficiently
small. The estimate in (III.30) is obtained starting from the definition in Eq. (II.67) and
using the soft photon bound

‖ b�k,λ�
σ j

�P ‖ ≤ C α1/2 1σ j ,
(
�k)

|�k|3/2 (III.31)

(where 1σ j ,
(
�k) is the characteristic function of the set {�k : σ j < |�k| ≤ 
}) that follows

from inequality (II.10) and the identity

b�k,λ�
σ j

�P = −α 1
2

1σ j ,
(
�k)

|�k| 1
2

1

H
σ j

�P−�k + |�k| − E
σ j

�P
�ε�k,λ · �∇ �P H

σ j

�P �
σ j

�P , (III.32)

which is derived in [4] by using a “pull-through argument”.
By a standard procedure (see, e.g., [12]), one obtains similar results for the ground

state vectors of the σ -dependent Hamiltonians K σ
�P , for arbitrary σ > 0. A precise state-

ment concerning the rate of convergence is as follows: The normalized ground state
vectors (that, with an abuse of notation, we call �σ�P )

�σ�P :=
1

2π i

∮
γσ

dz 1
K σ

�P−z� f

‖ 1
2π i

∮
γσ

1
K σ

�P−z� f ‖
, (III.33)

where γσ := {z ∈ C | |z − Eσ�P | = ρ−
2 σ }, converge strongly to a vector � �P , as σ → 0,

with

‖�σ�P −� �P‖ ≤ O(α 1
4

( σ



)1−δ
) (III.34)

for any 0 < δ(< 1), provided α is in an interval (0, αδ), where αδ > 0, αδ → 0 as
δ → 0. The δ-dependence of the interval αδ is an indirect consequence of the upper
bound on ε that must be imposed through (III.24) to implement the proof by induc-

tion. The relations (II.79)-(II.82) and ε > Cα
1
16 induce a δ-dependence on the other

parameters and in particular on α. Another δ-type dependence of the estimated rate of
convergence, O(( σ




)1−δ
), comes from the logarithmic term in (III.30). However, this

does not spoil the uniformity in δ of the interval of admissible values of α but only affects
the multiplicative constant on the R.H.S. of (III.34). Moreover, with further work, the
estimate in Eq. (III.30) can be improved to remove the logarithmic term.
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III.1. Convergence of the second derivative of the ground state energy Eσ�P . Because of
rotational symmetry we have that Eσ�P ≡ Eσ| �P|. Moreover, (Hσ

�P |Fσ
) �P∈S is an analytic

family of type A in �P ∈ S, with an isolated eigenvalue Eσ| �P|. Thus, the second derivative

∂2 Eσ| �P|
(∂| �P|)2 is well defined and

∂2 Eσ| �P|
(∂| �P|)2 = ∂2

i Eσ| �P|| �P=Pi î , i = 1, 2, 3, (III.35)

where ∂i := ∂
∂Pi .

Without loss of generality, the following results are proven for the standard sequence
(σ j )

∞
j=0 of infrared cutoffs. By simple arguments (see [12]), limiting behavior as σ → 0

is shown to be “sequence-independent”.
By analytic perturbation theory we have that

∂2
i E

σ j

| �P|| �P=Pi î

= 1 − 2

〈
1

2π i

∮
γ j

1

H
σ j

�P − z j

[
Pi − (βσ j )i

]

× 1

H
σ j

�P − z j
dz j �

σ j

�P ,
[

Pi − (βσ j )i
]
�
σ j

�P

〉∣∣∣∣∣ �P=Pi î

, (III.36)

here �
σ j

�P is the normalized ground state eigenvector of H
σ j

�P .

Next, we make use of the Bogoliubov transformation implemented by Wσ j (
�∇E

σ j

�P )
to show that

〈 1

2π i

∮
γ j

1

H
σ j

�P − z j
[Pi − (βσ j )i ] 1

H
σ j

�P − z j
dz j �

σ j

�P , [Pi − (βσ j )i ]�σ j

�P 〉

(III.37)

= 1

‖�σ j

�P ‖2

〈
1

2π i

∮
γ j

1

K
σ j

�P − z j

[
Pi − Wσ j (

�∇E
σ j

�P )(β
σ j )i W ∗

σ j
( �∇E

σ j

�P )
]

× 1

K
σ j

�P − z j
dz j �

σ j

�P ,
[

Pi − Wσ j (
�∇E

σ j

�P )(β
σ j )i W ∗

σ j
( �∇E

σ j

�P )
]
�
σ j

�P

〉
, (III.38)

where �
σ j

�P is the ground state eigenvector of K
σ j

�P (iteratively constructed in Sect. II).
Recalling the definitions

��σ j

�P := Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )− 〈Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )〉� f , (III.39)

��σ j

�P := ��σ j

�P − 〈 ��σ j

�P 〉
�
σ j
�P
, (III.40)

and because of the identity (Feynman-Hellman, see (II.36))

〈 �βσ j 〉
ψ
σ j
�P

= �P − �∇E
σ j

�P (III.41)

= 〈 ��σ j

�P 〉
�
σ j
�P

+ 〈Wσ j (
�∇E

σ j

�P )
�βσ j W ∗

σ j
( �∇E

σ j

�P )〉� f , (III.42)
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we find that

Pi − Wσ j (
�∇E

σ j

�P )(β
σ j )i W ∗

σ j
( �∇E

σ j

�P ) = −(�σ j

�P )
i + ∂i E

σ j

�P ; (III.43)

hence,

∂2
i E

σ j

| �P|| �P=Pi î (III.44)

= 1 − 2
1

‖�σ j

�P ‖2
〈 1

2π i

∮
γ j

1

K
σ j

�P − z j
[∂i E

σ j

�P − (�
σ j

�P )
i ] 1

K
σ j

�P − z j
dz j �

σ j

�P ,

[∂i E
σ j

�P − (�
σ j

�P )
i ]�σ j

�P 〉| �P=Pi î . (III.45)

Using the eigenvalue equation

K
σ j

�P �
σ j

�P = E
σ j

�P �
σ j

�P ,

the terms proportional to (∂i E
σ j

�P )
2 and to the mixed terms – i.e., proportional to the

product of ∂i E
σ j

�P and (�
σ j

�P )
i – are seen to be identically 0, because the contour integral

vanishes for each i = 1, 2, 3, e.g.,
∮
γ j

〈 1

K
σ j

�P − z j
[∂i E

σ j

�P ] 1

K
σ j

�P − z j
�
σ j

�P , [∂i E
σ j

�P ]�σ j

�P 〉dz̄ j

=
∮
γ j

〈�σ j

�P , �
σ j

�P 〉
(

∂i E
σ j

�P
E
σ j

�P − z̄ j

)2

dz̄ j = 0. (III.46)

It follows that

∂2
i E

σ j

| �P|| �P=Pi î (III.47)

= 1 +
1

π i

∮
γ j

d z̄ j 〈 1

K σ
�P − z j

(�
σ j

�P )
i 1

K σ
�P − z j

�
σ j

�P
‖�σ j

�P ‖ , (�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖〉| �P=Pi î

(III.48)

= 1 +
1

π i

∮
γ j

d z̄ j
1

E
σ j

�P − z̄ j
〈 (�σ j

�P )
i 1

K
σ j

�P − z j
(�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖ ,
�
σ j

�P
‖�σ j

�P ‖〉| �P=Pi î .

(III.49)

We are now ready for the key estimate.

Lemma III.2. The estimate below holds true ( j ∈ N):
∣∣∣∣∣
∮
γ j−1

〈
(�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖ ,
1

K
σ j−1

�P − z̄ j−1
(�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖

〉
1

E
σ j−1

�P − z̄ j−1
dz̄ j−1

−
∮
γ j

〈
(�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖ ,
1

K
σ j

�P − z̄ j
(�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖

〉
1

E
σ j

�P − z̄ j
d z̄ j

∣∣∣∣∣ ≤ ε j (1−2δ),

(III.50)

for any 0 < δ(< 1/2), and for α and ε (> Cα
1
16 ) small enough depending on δ.
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Proof. By unitarity of Wσ j (
�∇E

σ j−1

�P )W ∗
σ j
( �∇E

σ j

�P ),

∮
γ j

〈
(�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖ ,
1

K
σ j

�P − z̄ j
(�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖

〉
1

E
σ j

�P − z̄ j
d z̄ j (III.51)

=
∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
1

K̂
σ j

�P − z̄ j
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
1

E
σ j

�P − z̄ j
d z̄ j . (III.52)

By assumption, α is so small that the Neumann series expansions of the resolvents below
converge in Fb

σ j
:

1

K̂
σ j

�P − z̄ j
= 1

K
σ j−1

�P − z̄ j
+�∞

1 (K
σ j−1

�P , z̄ j ), (III.53)

1

E
σ j

�P − z̄ j
= 1

E
σ j−1

�P − z̄ j
+�(E

σ j−1

�P , z̄ j ), (III.54)

where

�∞
1 (K

σ j−1

�P , z̄ j ) :=
∞∑

l=1

1

K
σ j−1

�P − z̄ j
[−(�K �P |σ j−1

σ j + Êσ j

�P − Eσ j−1

�P )
1

K
σ j−1

�P − z̄ j
]l ,

(III.55)

and �K �P |σ j−1
σ j is defined in Eq. (II.66),

�(E
σ j−1

�P , z̄ j ) := 1

E
σ j

�P − z̄ j
(E

σ j−1

�P − E
σ j

�P )
1

E
σ j−1

�P − z̄ j
. (III.56)

We proceed by using the obvious identity,

∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
1

K̂
σ j

�P − z̄ j
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
1

E
σ j

�P − z̄ j
d z̄ j (III.57)

=
∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
1

K
σ j−1

�P − z̄ j
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
1

E
σ j−1

�P − z̄ j
d z̄ j (III.58)

+
∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ , �
∞
1 (K

σ j−1

�P , z̄ j )(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
1

E
σ j−1

�P − z̄ j
d z̄ j (III.59)

+
∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
1

K̂
σ j

�P − z̄ j
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
�(E

σ j−1

�P , z̄ j )dz̄ j . (III.60)

Each of the expressions (III.58) and (III.59) can be rewritten by adding and subtracting

(�
σ j−1

�P )i
�
σ j−1
�P

‖�σ j−1
�P ‖ . For (III.58) we get
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(III.58)

=
∮
γ j

〈
(�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖ ,
1

K
σ j−1

�P − z̄ j
(�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖

〉
1

E
σ j−1

�P − z̄ j
d z̄ j (III.61)

+
∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ − (�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖ , (III.62)

1

K
σ j−1

�P − z̄ j

[
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ − (�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖

]〉
1

E
σ j−1

�P − z̄ j
d z̄ j

+
∮
γ j

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ − (�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖ , (III.63)

1

K
σ j−1

�P − z̄ j
(�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖

〉
1

E
σ j−1

�P − z̄ j
d z̄ j

+
∮
γ j

〈
(�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖ , (III.64)

1

K
σ j−1

�P − z̄ j

[
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ − (�
σ j−1

�P )i
�
σ j−1

�P
‖�σ j−1

�P ‖

]〉
1

E
σ j−1

�P − z̄ j
d z̄ j .

The difference in Eq. (III.50) corresponds to the sum of the terms (III.59)-(III.60) and of
the terms (III.62)-(III.64). In fact, (III.61) corresponds to the first term in (III.50) after a
contour deformation from γ j−1 to γ j .

The sum of the remainder terms (III.59), (III.60), and (III.62)-(III.64) can be bounded
by ε j (1−2δ), for ε,R0 andα small enough but independent of j , for any �P ∈ S. (We recall

that R0 can be taken arbitrarily small, provided α is small enough, and that ε > Cα
1
16 .)

The details are as follows.

• For (III.62)-(III.64) use the following inequalities

∥∥∥∥∥

(
1

K
σ j−1

�P − z̄ j

)
(�
σ j−1

�P )i �
σ j−1

�P

∥∥∥∥∥ ≤ O( R
1
2
0

α
1
4 ε( j−1)δ

), (III.65)

∥∥∥
[
(�̂
σ j

�P )
i − (�

σ j−1

�P )i
]
�̂
σ j

�P
∥∥∥ ≤ O(α 1

4 ε j (1−δ) + α
1
2 ε j−1), (III.66)

∥∥∥∥∥
1

K
σ j−1

�P − z̄ j

∥∥∥∥∥
Fσ j

≤ O( 1

ε j
), (III.67)

∥∥∥(�σ j−1

�P )i (�̂
σ j

�P −�
σ j−1

�P )

∥∥∥ ≤ O(α 1
4 ε j (1−δ)), (III.68)

∥∥∥�̂σ j

�P −�
σ j−1

�P
∥∥∥ ≤ α

1
4 ε j (1−δ). (III.69)

In order to derive the inequality in Eq. (III.66), one uses Eqs. (II.63), (II.73), and
(II.56)-(II.57).
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• For (III.59), after adding and subtracting (�
σ j−1

�P )i
�
σ j−1
�P

‖�σ j−1
�P ‖ , one also has to use (III.8)

and that
∥∥∥∥∥
[
−(�K �P |σ j−1

σ j + Êσ j

�P − Eσ j−1

�P )
] 1

K
σ j−1

�P − z j

(
�
σ j−1

�P
)i
�
σ j−1

�P

∥∥∥∥∥

≤ O
⎛
⎝α 1

2 ε j−1 R
1
4
0

α
1
4 ε( j−1)δ

⎞
⎠ . (III.70)

• To bound (III.60), note that

(III.60) = −2π i

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
1

K̂
σ j

�P − E
σ j

�P
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
(III.71)

+2π i

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
1

K̂
σ j

�P − E
σ j−1

�P
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
(III.72)

= 2π i

〈
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖ ,
(E

σ j−1

�P − E
σ j

�P )

K̂
σ j

�P − E
σ j

�P

1

K̂
σ j

�P − E
σ j−1

�P
(�̂
σ j

�P )
i
�̂
σ j

�P
‖�̂σ j

�P ‖

〉
,

(III.73)

where |Eσ j−1

�P − E
σ j

�P | ≤ O(α ε j−1). Then use the following inequality analogous to
(III.65):

∥∥∥∥∥

(
1

K̂
σ j

�P − E
σ j

�P

)
(�̂
σ j

�P )
i �̂

σ j

�P

∥∥∥∥∥ ≤ O( R
1
2
0

α
1
4 ε jδ

). (III.74)

��

Theorem III.3. For α small enough,
∂2 Eσ| �P|
(∂| �P|)2 converges, as σ → 0. The limiting function,

�| �P| := limσ→0
∂2 Eσ| �P|
(∂| �P|)2 , is Hölder-continuous in �P ∈ S (for an exponent η > 0). The

limit

lim
α→0

�| �P| = 1 (III.75)

holds true uniformly in �P ∈ S.

Proof. It is enough to prove the result for a fixed choice of a sequence {σ j }∞j=0. The

estimate in Lemma III.2 implies the existence of lim j→∞ ∂2
i E

σ j

| �P|| �P=Pi î .

We now observe that ∂2
i Eσ0

| �P|| �P=Pi î = 1 (see Eq. (III.49)), because

(�
σ0
�P )

i ≡ ( �P f )i , �
σ0
�P ≡ � f . (III.76)
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According to the constraints in Theorem III.1, we can pick ε = O(αν) for some small
exponent ν > 0 so that, for α small enough, Lemma III.2 and (III.76) yield

∣∣∣∣∣
1

π i

∮
γ j

d z̄ j
1

E
σ j

�P − z̄ j

〈
�
σ j

�P
‖�σ j

�P ‖ , (�
σ j

�P )
i 1

K
σ j

�P − z̄ j
(�
σ j

�P )
i
�
σ j

�P
‖�σ j

�P ‖

〉
| �P=Pi î

∣∣∣∣∣
≤ O(αν(1−2δ)), (III.77)

uniformly in j ∈ N. Hence the limit (III.75) follows.
The Hölder-continuity in �P of �| �P| is a trivial consequence of the analyticity in

�P ∈ S of Eσ�P , for any σ > 0, and of Lemma III.2; see [12] for similar results. ��

Corollary III.4. For α small enough, the function E �P := limσ→0 Eσ�P , �P ∈ S, is twice
differentiable, and

∂2 E| �P|
(∂| �P|)2 = �| �P|. (III.78)

Proof. The result follows from the Hölder-continuity of�| �P|, of limσ→0
∂Eσ| �P|
∂| �P| , and from

the fundamental theorem of calculus applied to the functions E �P and limσ→0
∂Eσ| �P|
∂| �P| ,

because

•

∂Eσ| �P|
∂| �P| and

∂2 Eσ| �P|
(∂| �P|)2 (III.79)

converge pointwise, for �P ∈ S, as σ → 0,
•

∣∣∣∣∣
∂Eσ| �P|
∂| �P|

∣∣∣∣∣ and

∣∣∣∣∣∣
∂2 Eσ| �P|
(∂| �P|)2

∣∣∣∣∣∣
(III.80)

are uniformly bounded in σ , for all �P ∈ S.

��
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