74 research outputs found

    Synchronization in disordered Josephson junction arrays: Small-world connections and the Kuramoto model

    Get PDF
    We study synchronization in disordered arrays of Josephson junctions. In the first half of the paper, we consider the relation between the coupled resistively- and capacitively shunted junction (RCSJ) equations for such arrays and effective phase models of the Winfree type. We describe a multiple-time scale analysis of the RCSJ equations for a ladder array of junctions \textit{with non-negligible capacitance} in which we arrive at a second order phase model that captures well the synchronization physics of the RCSJ equations for that geometry. In the second half of the paper, motivated by recent work on small world networks, we study the effect on synchronization of random, long-range connections between pairs of junctions. We consider the effects of such shortcuts on ladder arrays, finding that the shortcuts make it easier for the array of junctions in the nonzero voltage state to synchronize. In 2D arrays we find that the additional shortcut junctions are only marginally effective at inducing synchronization of the active junctions. The differences in the effects of shortcut junctions in 1D and 2D can be partly understood in terms of an effective phase model.Comment: 31 pages, 21 figure

    Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds

    Get PDF
    The relationships of passerines (such as the well-studied zebra finch) with non-passerine birds is one of the great enigmas of avian phylogenetic research, because decades of extensive morphological and molecular studies yielded highly inconsistent results between and within data sets. Here we show the first application of the virtually homoplasy-free retroposon insertions to this controversy. Our study examined ~200,000 retroposon-containing loci from various avian genomes and retrieved 51 markers resolving early bird phylogeny. Among these, we obtained statistically significant evidence that parrots are the closest and falcons the second-closest relatives of passerines, together constituting the Psittacopasserae and the Eufalconimorphae, respectively. Our new and robust phylogenetic framework has substantial implications for the interpretation of various conclusions drawn from passerines as model organisms. This includes insights of relevance to human neuroscience, as vocal learning (that is, birdsong) probably evolved in the psittacopasseran ancestor, >30 million years earlier than previously assumed

    Spatially modulated structural colour in bird feathers.

    Get PDF
    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes

    Call Cultures in Orang-Utans?

    Get PDF
    BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents) has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects). Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval), individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might assist in bridging the gap between vocal communication in non-human primates and human speech

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Song plasticity over time and vocal learning in clay-colored thrushes

    Get PDF
    Songbirds have been traditionally classified into close-ended or open-ended learning species according to the length of the sensitive period during which birds are able to memorize new vocalizations. Closed-ended learners are generally not capable of changing their song after the first year of life, while open-ended learners show song plasticity as adults. A few Turdus species have been sug- gested to be open-ended learners, but no long-term study has been conducted to investigate their song plasticity over time. We analyzed the songs of clay-colored thrushes, T. grayi, over four successive breeding seasons to assess song plasticity in their syllable repertoires within and between breeding seasons. A total of 16,262 syllables were classi- fied through visual inspection of spectrograms and multi- dimensional scaling analysis based on spectrogram correlations. On average, 563 ± 153 (SD) syllables per male per breeding season were analyzed. Male repertoire size was 9–20 syllable types. Males were capable of modifying their syllable repertoire between the initial and final periods of the breeding season. Song plasticity within breeding seasons may be associated with imitation between neighboring males, suggesting song learning in males that were C2 years old. This short-term plasticity is not enough, however, to explain the high proportion of change (mean = 65 % syllable types) in repertoire composition between breeding seasons in adult males. Song plasticity resulting from annual changes in repertoire composition could be explained by open-ended learning, but another mechanism, extended memory and re-expression, could also explain long-term plasticity. Experimental studies controlling the acoustic environment are needed to determine which mechanism is responsible for such a high level of song plasticity.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

    Get PDF
    Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Hippocampal subfield CA2+3 exhibits accelerated aging in Alcohol Use Disorder: A preliminary study

    Get PDF
    The profile of brain structural dysmorphology of individuals with Alcohol Use Disorders (AUD) involves disruption of the limbic system. In vivo imaging studies report hippocampal volume loss in AUD relative to controls, but only recently has it been possible to articulate different regions of this complex structure. Volumetric analysis of hippocampal regions rather than total hippocampal volume may augment differentiation of disease processes. For example, damage to hippocampal subfield cornu ammonis 1 (CA1) is often reported in Alzheimer's disease (AD), whereas deficits in CA4/dentate gyrus are described in response to stress and trauma. Two previous studies explored the effects of chronic alcohol use on hippocampal subfields: one reported smaller volume of the CA2+3 in alcohol-dependent subjects relative to controls, associated with years of alcohol consumption; the other, smaller volumes of presubiculum, subiculum, and fimbria in alcohol-dependent relative to control men.The current study, conducted in 24 adults with DSM5-diagnosed AUD (7 women, 53.7 ± 8.8) and 20 controls (7 women, 54.1 ± 9.3), is the first to use FreeSurfer 6.0, which provides state-of-the art hippocampal parcellation, to explore the sensitivity of hippocampal sufields to alcoholism. T1- and T2- images were collected on a GE MR750 system with a 32-channel Nova head coil. FreeSurfer 6.0 hippocampal subfield analysis produced 12 subfields: parasubiculum; presubiculum; subiculum; CA1; CA2+3; CA4; GC-ML-DG (Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)); molecular layer; hippocampus-amygdala-transition-area (HATA); fimbria; hippocampal tail; hippocampal fissure; and whole volume for left and right hippocampi. A comprehensive battery of neuropsychological tests comprising attention, memory and learning, visuospatial abilities, and executive functions was administered.Multiple regression analyses of raw volumetric data for each subfields by group, age, sex, hemisphere, and supratentorial volume (svol) showed significant effects of svol (p < .04) on nearly all structures (excluding tail and fissure). Volumes corrected for svol showed effects of age (fimbria, fissure) and group (subiculum, CA1, CA4, GC-ML-DG, HATA, fimbria); CA2+3 showed a diagnosis-by-age interaction indicating older AUD individuals had a smaller volume than would be expected for their age. There were no selective relations between hippocampal subfields and performance on neuropsychological tests, likely due to lack of statistical power.The current results concur with the previous study identifying CA2+3 as sensitive to alcoholism, extend them by identifying an alcoholism-age interaction, and suggest an imaging phenotype distinguishing AUD from AD and stress/trauma. Keywords: Alcohol Use Disorder (AUD), Hippocampus, Hippocampal subregions, Hippocampal subfields, Attention, Learning and memory, Visuospatial, Executive function
    corecore