356 research outputs found

    Preface

    Get PDF

    Synthesis of di(Imdazolium) and di(Pyrazolium) Salts as Precursors for N-heterocyclic Dicarbene Complexes

    Get PDF
    Alpha,omega-bis(pyrazol-1-yl)alkanes and alpha,omega-bis(imidazol-1-yl)alkanes with spacers consisting of four to ten methylene groups have been prepared from pyrazole, 3,5-dimethylpyrazole or imidazole and corresponding dibromoalkanes in a superbasic medium KOH-DMSO. The proposed method of synthesis allowed the preparation of new flexible bidentate ligands without the need to use toxic solvents and tedious workup procedures. Bis(pyrazol-1-yl)alkanes were further functionalized for their use as precursors for “non-classical” mesoionic N-heterocyclic carbene ligands. One the first step, iodine atoms were introduced to positions 4 of pyrazole rings by oxidative iodination using I[2]-HIO[3] system. On the next step, nitrogen atoms in positions 2 of pyrazole rings were alkylated using several agents. Reaction with methyliodide unexpectedly led to the formation of only mono-alkylated products even after 7 days of refluxing in a neat alkyliodide. Methylation by trimethyloxonium tetrafluoroborate or methyltriflate led to dimethylated products in high yields. Bis(imidazol-1-yl)alkanes were easily alkylated by methyliodide to give di(imidazolium) salts – precursors to “classic” N-heterocyclic dicarbenes

    Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration

    Get PDF
    We report room-temperature Raman scattering studies of nominally undoped (100) GaAs1−xBix epitaxial layers exhibiting Biinduced (p-type) longitudinal-optical-plasmon coupled (LOPC) modes for 0.018≤x≤0.048. Redshifts in the GaAs-like optical modes due to alloying are evaluated and are paralleled by strong damping of the LOPC. The relative integrated Raman intensities of LO(Γ) and LOPC ALO/ALOPC are characteristic of heavily doped p-GaAs, with a remarkable near total screening of the LO(Γ) phonon (ALO/ALOPC →0) for larger Bi concentrations. A method of spectral analysis is set out which yields estimates of hole concentrations in excess of 5 × 1017 cm−3 and correlates with the Bi molar fraction. These findings are in general agreement with recent electrical transport measurements performed on the alloy, and while the absolute size of the hole concentrations differ, likely origins for the discrepancy are discussed. We conclude that the damped LO-phonon-hole-plasmon coupling phenomena plays a dominant role in Raman scattering from unpassivated nominally undoped GaAsBi

    Reducing the impact of radioactivity on quantum circuits in a deep-underground facility

    Get PDF
    As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware

    Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags

    Get PDF
    The four zinc(II) mixed-ligand metal-organic frameworks (MIXMOFs) Zn(BPZ)x(BPZNO2)1-x, Zn(BPZ)x(BPZNH2)1-x, Zn(BPZNO2)x(BPZNH2)1-x, and Zn(BPZ)x(BPZNO2)y(BPZNH2)1-x-y (H2BPZ = 4,4′-bipyrazole; H2BPZNO2 = 3-nitro-4,4′-bipyrazole; H2BPZNH2 = 3-amino-4,4′-bipyrazole) were prepared through solvothermal routes and fully investigated in the solid state. Isoreticular to the end members Zn(BPZ) and Zn(BPZX) (X = NO2, NH2), they are the first examples ever reported of (pyr)azolate MIXMOFs. Their crystal structure is characterized by a three-dimensional open framework with one-dimensional square or rhombic channels decorated by the functional groups. Accurate information about ligand stoichiometric ratio was determined (for the first time on MIXMOFs) through integration of selected ligands skeleton resonances from 13C cross polarized magic angle spinning solid-state NMR spectra collected on the as-synthesized materials. Like other poly(pyrazolate) MOFs, the four MIXMOFs are thermally stable, with decomposition temperatures between 708 and 726 K. As disclosed by N2 adsorption at 77 K, they are micro-mesoporous materials with Brunauer-Emmett-Teller specific surface areas in the range 400-600 m2/g. A comparative study (involving also the single-ligand analogues) of CO2 adsorption capacity, CO2 isosteric heat of adsorption (Qst), and CO2/N2 selectivity in equimolar mixtures at p = 1 bar and T = 298 K cast light on interesting trends, depending on ligand tag nature or ligand stoichiometric ratio. In particular, the amino-decorated compounds show higher Qst values and CO2/N2 selectivity vs the nitro-functionalized analogues; in addition, tag "dilution" [upon passing from Zn(BPZX) to Zn(BPZ)x(BPZX)1-x] increases CO2 adsorption selectivity over N2. The simultaneous presence of amino and nitro groups is not beneficial for CO2 uptake. Among the compounds studied, the best compromise among uptake capacity, Qst, and CO2/N2 selectivity is represented by Zn(BPZ)x(BPZNH2)1-x

    A Target Animal Effectiveness Study on Adjuvant Peptide-Based Vaccination in Dogs with Non-Metastatic Appendicular Osteosarcoma Undergoing Amputation and Chemotherapy

    Get PDF
    Despite efforts to develop novel treatment strategies, human and canine osteosarcomas continue to have poor prognosis and limited overall survival. The aim of this clinical trial was to test the antitumor effect and safety of multiple dermal administrations of a peptide-based anticancer vaccine in dogs with non-metastatic appendicular osteosarcoma undergoing standard of care (SOC), consisting of limb amputation and adjuvant chemotherapy. Salmonella-infected canine osteosarcoma cells were induced to release immunogenic peptides in the extracellular space via Cx43 hemichannels opening; the secretome was collected and constituted the vaccine. Dogs with non-metastatic appendicular osteosarcoma were eligible for recruitment. Following limb amputation and adjuvant carboplatin, dogs were vaccinated on a monthly basis for six times and followed up with serial thoracic radiographs. A population of dogs undergoing SOC treatment (amputation and adjuvant carboplatin) before the vaccine was available served as controls. Primary endpoints were time to metastasis (TTM) and tumor-specific survival (TSS). Secondary endpoints were feasibility, toxicity, T-cell and humoral immune responses. A total of 20 dogs were vaccinated along with SOC and 34 received SOC only. Vaccine-specific humoral and T-cell responses were observed; their amplitude correlated with TSS. Vaccine-associated toxicity was not recorded. TTM and TSS were significantly longer in vaccinated versus unvaccinated dogs (TTM: 308 vs. 240 days, respectively; p = 0.010; TSS: 621 vs. 278 days, respectively; p = 0.002). In dogs with non-metastatic osteosarcoma undergoing SOC, the addition of a bacteria-based vaccination strategy increased TTM, thereby prolonging survival, while maintaining a safe profile. Additionally, vaccinated dogs developed a long-term tumor-specific response, as documented by the immunomonitoring of these patients over time. These results hold promise for future management of canine osteosarcoma

    BULLKID: Monolithic array of particle absorbers sensed by Kinetic Inductance Detectors

    Full text link
    We introduce BULLKID, an innovative phonon detector consisting of an array of dices acting as particle absorbers sensed by multiplexed Kinetic Inductance Detectors (KIDs). The dices are carved in a thick crystalline wafer and form a monolithic structure. The carvings leave a thin common disk intact in the wafer, acting both as holder for the dices and as substrate for the KID lithography. The prototype presented consists of an array of 64 dices of 5.4x5.4x5 mm3^3 carved in a 3" diameter, 5 mm thick silicon wafer, with a common disk 0.5 mm thick hosting a 60 nm patterned aluminum layer. The resulting array is highly segmented but avoids the use of dedicated holding structures for each unit. Despite the fact that the uniformity of the KID electrical response across the array needs optimization, the operation of 8 units with similar features shows, on average, a baseline energy resolution of 26±726\pm7 eV. This makes it a suitable detector for low-energy processes such as direct interactions of dark matter and coherent elastic neutrino-nucleus scattering

    Influence of Grain Boundary Character on Creep Void Formation in Alloy 617

    Get PDF
    Alloy 617, a high temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the Next Generation Nuclear Plant (NGNP) which will operate at temperatures exceeding 760oC. Orientation imaging microscopy (OIM) is used to characterize the grain boundaries in the vicinity of creep voids that develop during high temperature creep tests (800-1000oC at creep stresses ranging from 20-85 MPa) terminated at creep strains ranging from 5-40%. Observations using optical microscopy indicate creep rate does not significantly influence the creep void fraction at a given creep strain. Preliminary analysis of the OIM data indicates voids tend to form on grain boundaries parallel, perpendicular or 45o to the tensile axis, while few voids are found at intermediate inclinations to the tensile axis. Random grain boundaries intersect most voids while CSL-related grain boundaries did not appear to be consistently associated with void development

    Observing galaxy clusters and the cosmic web through the Sunyaev Zel'dovich effect with MISTRAL

    Full text link
    Galaxy clusters and surrounding medium, can be studied using X-ray bremsstrahlung emission and Sunyaev Zel'dovich (SZ) effect. Both astrophysical probes, sample the same environment with different parameters dependance. The SZ effect is relatively more sensitive in low density environments and thus is useful to study the filamentary structures of the cosmic web. In addition, observations of the matter distribution require high angular resolution in order to be able to map the matter distribution within and around galaxy clusters. MISTRAL is a camera working at 90GHz which, once coupled to the Sardinia Radio Telescope, can reach 1212'' angular resolution over 44' field of view (f.o.v.). The forecasted sensitivity is NEFD1015mJysNEFD \simeq 10-15mJy \sqrt{s} and the mapping speed is MS=3802/mJy2/hMS= 380'^{2}/mJy^{2}/h. MISTRAL was recently installed at the focus of the SRT and soon will take its first photons.Comment: To appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science
    corecore